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Abstract. Let A =
⊕

i∈N Ai be a Koszul algebra over a field K = A0, and
*mod A the category of finitely generated graded left A-modules. The linearity
defect ldA(M) of M ∈ *mod A is an invariant defined by Herzog and Iyengar. An
exterior algebra E is a Koszul algebra which is the Koszul dual of a polynomial
ring. Eisenbud et al. showed that ldE(M) < ∞ for all M ∈ *mod E. Improving
their result, we show that the Koszul dual A! of a Koszul commutative algebra
A satisfies the following.

• Let M ∈ *mod A!. If {dimK Mi | i ∈ Z } is bounded, then ldA!(M) < ∞.
• If A is complete intersection, then regA!(M) < ∞ and ldA!(M) < ∞ for all

M ∈ *mod A!.
• If E =

∧
⟨y1, . . . , yn⟩ is an exterior algebra, then ldE(M) ≤ cn!2(n−1)! for

M ∈ *mod E with c := max{dimK Mi | i ∈ Z }.

1. Introduction

Let A =
⊕

i∈N Ai be a (not necessarily commutative) graded algebra over a field
K := A0 with dimK Ai < ∞ for all i ∈ N, and *mod A the category of finitely
generated graded left A-modules. Throughout this paper, we assume that A is
Koszul, that is, K = A/

⊕
i≥1 Ai has a graded free resolution of the form

· · · −→ A(−i)βi(K) −→ · · · −→ A(−2)β2(K) −→ A(−1)β1(K) −→ A −→ K −→ 0.

Koszul duality is a certain derived equivalence between A and its Koszul dual
algebra A! := Ext•A(K,K).

For M ∈ *mod A, we have its minimal graded free resolution · · · → P1 → P0 →
M → 0, and natural numbers βi, j(M) such that Pi

∼=
⊕

j∈Z A(−j)βi, j(M). We call

regA(M) := sup{ j − i | i ∈ N, j ∈ Z with βi, j(M) ̸= 0 }
the regularity of M . When A is a polynomial ring, regA(M) has been deeply studied.
Even for a general Koszul algebra A, regA(M) is still an interesting invariant closely
related to Koszul duality (see Theorem 3.5 below).

Let P• be a minimal graded free resolution of M ∈ *mod A. The linear part
lin(P•) of P• is the chain complex such that lin(P•)i = Pi for all i and its differ-
ential maps are given by erasing all the entries of degree ≥ 2 from the matrices
representing the differentials of P•. According to Herzog-Iyengar [8], we call

ldA(M) := sup{ i | Hi(lin(P•)) ̸= 0 }
the linearity defect of M . This invariant is related to the regularity via Koszul
duality (see Theorem 3.8 below).



In §4, we mainly treat a Koszul commutative algebra A or its dual A!. Even in
this case, it can occur that ldA(M) = ∞ for some M ∈ *mod A (c.f. [8]), while
Avramov-Eisenbud [1] showed that regA(M) < ∞ for all M ∈ *mod A. On the
other hand, Herzog-Iyengar [8] proved that if A is complete intersection or Golod
then ldA(M) < ∞ for all M ∈ *mod A. Initiated by these results, we will show the
following.

Theorem A. Let A be a Koszul commutative algebra (more generally, a Koszul
algebra with regA(M) < ∞ for all M ∈ *mod A). Then we have;

(1) Let N ∈ *mod A!. If regA!(N) < ∞ (e.g. dimK N < ∞), then ldA!(N) < ∞.
(2) The following conditions are equivalent.

(a) ldA(M) < ∞ for all M ∈ *mod A.
(a’) ldA(M) < ∞ for all M ∈ *mod A with M =

⊕
i=0,1 Mi.

(b) If N ∈ *mod A! has a finite presentation, then regA!(N) < ∞.

In Theorem A (2), the implications (a) ⇒ (a′) ⇔ (b) hold for a general Koszul
algebra.

If A is a complete intersection, then the Koszul dual A! is left (and right) noe-
therian and admits a balanced dualizing complex, hence we have regA!(N) < ∞ for
all N ∈ *mod A! by [9]. So ldA(M) < ∞ for all M ∈ *mod A by Theorem A (2).
This is a special case of the above mentioned result of [8], but the proof is different.

Let *fp A! be the full subcategory of *mod A! consisting of finitely presented
modules.

Theorem B. If A is a Koszul algebra such that ldA(M) < ∞ for all M ∈ *mod A,
then A! is left coherent (in the graded context), and *fp A! is an abelian category.
If further A is commutative, then Koszul duality gives Db(*mod A) ∼= Db(*fp A!)op.
In particular, if A is a Koszul complete intersection, then we have

Db(*mod A) ∼= Db(*mod A!)op.

We remark that the last statement of Theorem B also follows from the existence
of a balanced dualizing complex and [10, Proposition 4.5].

Let E :=
∧

⟨y1, . . . , yn⟩ be an exterior algebra. Eisenbud et al. [6] showed that
ldE(N) < ∞ for all N ∈ *mod E (now this is a special case of Theorem A, since
E is the Koszul dual of a polynomial ring). If n ≥ 2, then sup{ ldE(N) | N ∈
*mod E } = ∞. On the other hand, we will see that

(1) ldE(N) ≤ cn!2(n−1)! (c := max{ dimK Ni | i ∈ Z })

for N ∈ *mod E. But a computer experiment suggests that the bound could be
very far from sharp. R. Okazaki and the author found a graded ideal I ⊂ E with
n = 6 and ldE(E/I) = 9. This is our “best record”, but still much lower than the
value given in (1).



2. Koszul Algebras and Koszul Duality

Let A =
⊕

i∈N Ai be a graded algebra over a field K := A0 with dimK Ai < ∞
for all i ∈ N, *Mod A the category of graded left A-modules, and *mod A the
full subcategory of *Mod A consisting of finitely generated modules. We say M =⊕

i∈Z Mi ∈ *Mod A is quasi-finite, if dimK Mi < ∞ for all i and Mi = 0 for i ≪ 0.
If M ∈ *mod A, then it is clearly quasi-finite. We denote the full subcategory of
*Mod A consisting of quasi-finite modules by qf A. (In this paper, we mainly treat
a Koszul commutative algebra A and its dual A! := Ext•A(K,K). Even in this case,
A! is not left noetherian in general. In fact, it is known that A! is left noetherian if
and only if A is complete intersection. So *mod A! is not necessarily abelian, and we
have to treat qf A!.) Clearly, qf A is an abelian category with enough projectives.
For M ∈ *Mod A and j ∈ Z, M(j) denotes the shifted module of M with M(j)i =
Mi+j. For M,N ∈ *Mod A, set HomA(M,N) :=

⊕
i∈Z Hom*Mod A(M,N(i)) to be

a graded K-vector space with HomA(M,N)i = Hom*Mod A(M,N(i)). Similarly, we
also define Exti

A(M,N).
Let C(qf A) be the homotopy category of cochain complexes in qf A, and C−(qf A)

its full subcategory consisting of complexes which are bounded above (i.e., X• ∈
C(qf A) with X i = 0 for i ≫ 0). We say P • ∈ C−(qf A) is a free resolution
of X• ∈ C−(qf A), if each P i is a free module and there is a quasi-isomorphism
P • → X•. We say a free resolution P • is minimal, if ∂(P i) ⊂ mP i+1 for all i. Here
∂ denotes the differential map, and m :=

⊕
i>0 Ai is the graded maximal ideal. Any

X• ∈ C−(qf A) has a minimal free resolution, which is unique up to isomorphism.
Regard K = A/m as a graded left A-module, and set

βi
j(X

•) := dimK Ext−i
A (X•, K)−j and βi(X•) :=

∑
j∈Z

βi
j(X

•)

for X• ∈ C−(qf A) and i, j ∈ Z. In this situation, if P • ∈ C−(qf A) is a minimal

free resolution of X•, then we have P i ∼=
⊕

j∈Z A(−j)βi
j(X

•) for each i ∈ Z. It is

easy to see that βi
j(X

•) < ∞ for each i, j.
Following the usual convention, we often describe (the invariants of) a free res-

olution of a module M ∈ qf A in the homological manner. So we have βi,j(M) =
β−i

j (M), and a minimal free resolution of M is of the form

P• : · · · −→
⊕
j∈Z

A(−j)β1,j(M) −→
⊕
j∈Z

A(−j)β0,j(M) −→ M −→ 0.

We say A is Koszul, if βi, j(K) ̸= 0 implies i = j, in other words, K has a graded
free resolution of the form

· · · −→ A(−i)βi(K) −→ · · · −→ A(−2)β2(K) −→ A(−1)β1(K) −→ A −→ K −→ 0.

Even if we regard K as a right A-module, we get the equivalent definition.
The polynomial ring K[x1, . . . , xn] and the exterior algebra

∧
⟨y1, . . . , yn⟩ are

primary examples of Koszul algebras. Of course, there are many other impor-
tant examples. In the noncommutative case, many of them are not left (or right)
noetherian. In the rest of the paper, we assume that A is Koszul.



Koszul duality is a derived equivalence between a Koszul algebra A and its dual
A!. A standard reference of this subject is Beilinson et al. [3]. But, in the present
paper, we follow the convention of Mori [10].

Recall that Yoneda product makes A! :=
⊕

i∈N Exti
A(K,K) a graded K-algebra.

(In the convention of [3], A! denotes the opposite algebra of our A!. So the reader
should be careful.) If A is Koszul, then so is A! and we have (A!)! ∼= A. The
Koszul dual of the polynomial ring S := K[x1, . . . , xn] is the exterior algebra E :=∧

⟨y1, . . . , yn⟩. In this case, since S is regular and noetherian, Koszul duality is
very simple. It gives an equivalence Db(*mod S) ∼= Db(*mod E) of the bounded
derived categories. In the general case, the description of Koszul duality is slightly
technical. For example, if A is not left noetherian, then *mod A is not an abelian
category. So we have to treat qf A.

Let C↑(qf A) be the full subcategory of C(qf A) (and C−(qf A)) consisting of
complexes X• satisfying

X i
j = 0 for i ≫ 0 or i + j ≪ 0.

And let D↑(qf A) be the localization of C↑(qf A) at quasi-isomorphisms. By the
usual argument, we see that D↑(qf A) is equivalent to the full subcategory of the
derived category D(qf A) (and D−(qf A)) consisting of the complex X• such that

H i(X•)j = 0 for i ≫ 0 or i + j ≪ 0.

It is easy to see that D↑(qf A) is a triangulated subcategory of D(qf A).
We write V ∗ for the dual space of a K-vector space V . Note that if M ∈ *Mod A

then M∗ :=
⊕

i∈Z(M−i)
∗ is a graded right A-module. And we fix a basis {xλ} of A1

and its dual basis {yλ} of (A1)
∗ (= (A!)1). Let (X•, ∂) ∈ C↑(qf A). In this notation,

we define the contravariant functor FA : C↑(qf A) → C↑(qf A!) as follows.

FA(X•)p
q =

⊕
A!

q+j ⊗K (Xj−p
−j )∗

with the differential d = d′ + d′′ given by

d′ : A!
q+j ⊗K (Xj−p

−j )∗ ∋ a ⊗ m 7−→ (−1)p
∑

ayλ ⊗ mxλ ∈ A!
q+j+1 ⊗K (Xj−p

−j−1)
∗

and

d′′ : A!
q+j ⊗K (Xj−p

−j )∗ ∋ a ⊗ m 7−→ a ⊗ ∂∗(m) ∈ A!
q+j ⊗K (Xj−p−1

−j )∗.

The contravariant functor FA! : C↑(qf A!) → C↑(qf A) is given by a similar way.
(More precisely, the construction is different, but the result is similar. See the
remark below.) They induce the contravariant functors FA : D↑(qf A) → D↑(qf A!)
and FA! : D↑(qf A!) → D↑(qf A).

Remark 2.1. In [10], two Koszul duality functors are defined individually. The
functor denoted by ĒA is the same as our FA. The other one which is denoted
by ẼA is defined using the operations HomK(A!,−) and HomK(−, K). But, in our
case, it coincides with FA except the convention of the sign ±1. So we do not give
the precise definition of ẼA here.



Theorem 2.2 (Koszul duality. c.f. [3, 10]). The contravariant functors FA and
FA! give an equivalence

D↑(qf A) ∼= D↑(qf A!)op.

The next result easily follows from Theorem 2.2 and the fact that FA(K) = A!.

Lemma 2.3 (cf. [10, Lemma 2.8]). For X• ∈ D↑(qf A), we have

βi
j(X

•) = dim H−i−j(FA(X•))j.

3. Regularity and Linearity Defect

Throughout this section, A =
⊕

i∈N Ai is a Koszul algebra.

Definition 3.1. For X• ∈ D↑(qf A), we call

regA(X•) := sup{ i + j | i, j ∈ Z with βi
j(X

•) ̸= 0 }
the regularity of X•. We set the regularity of the 0 module to be −∞.

We say A is left graded coherent, if any finitely generated graded left ideal of A
has a finite presentation. Let *fp A be the full subcategory of *mod A consisting of
finitely presented modules. As is well-known, A is left graded coherent if and only
if *fp A is an abelian subcategory of *mod A.

Lemma 3.2. If regA(M) < ∞ for all M ∈ *mod A then A is left noetherian.
Similarly, if regA(M) < ∞ for all M ∈ *fp A then A is left graded coherent.

Proof. Assume that A is not left noetherian. Then there is a graded left ideal I
which is not finitely generated. Clearly, A/I ∈ *mod A, but β1, j(A/I) = β0, j(I) ̸=
0 for arbitrary large j and regA(A/I) = ∞.

Assume that A is not left graded coherent. Then there is a graded left ideal I
which is finitely generated but not finitely presented. Clearly, A/I ∈ *fp A, but
β2, j(A/I) = β1, j(I) ̸= 0 for arbitrary large j and regA(A/I) = ∞. ¤
Remark 3.3. The author does not know any example of a Koszul algebra A which
admits M ∈ *mod A with regA(M) = ∞ but βi(M) =

∑
j∈Z βi, j(M) < ∞ for all

i. In particular, he does not know a left noetherian (resp. graded coherent) Koszul
algebra A such that regA(M) = ∞ for some M ∈ *mod A (resp. M ∈ *fp A).

Lemma 3.4. (1) For M ∈ qf A, we have

regA(M) < ∞ ⇒ βi(M) < ∞ for all i ⇒ M has a finite presentation.

(2) If X• → Y • → Z• → X•[1] is a triangle in D↑(qf A), then we have

regA(Y •) ≤ max{ regA(X•), regA(Z•) }.
If regA(X•) ̸= regA(Z•) + 1, then equality holds.

(3) If M ∈ *mod A has finite length, then regA(M) ≤ max{ i | Mi ̸= 0}.
(4) For X• ∈ D↑(qf A), we have

regA(X•) ≤ sup{ regA(H i(X•)) + i | i ∈ Z }.

The next result directly follows from Lemma 2.3.



Theorem 3.5 (Eisenbud et al [6], Mori [10]). For X• ∈ D↑(qf A), we have

regA(X•) = − inf{ i | H i(FA(X•)) ̸= 0 }.

We say a complex X• ∈ D↑(qf A) is strongly bounded, if X• is bounded (i.e.,
H i(X•) = 0 for i ≫ 0 or i ≪ 0) and regA(X•) < ∞. Let Dsb(qf A) be the full
subcategory of D↑(qf A) consisting of strongly bounded complexes. By Lemma 3.4
(2), Dsb(qf A) is a triangulated subcategory of D(qf A).

The next result follows from Theorem 3.5.

Proposition 3.6. The (restriction of) functors FA and FA! give an equivalence

Dsb(qf A) ∼= Dsb(qf A!)op.

Let (P •, ∂) ∈ C↑(qf A) be a complex of free A-modules such that ∂(P i) ⊂ mP i+1,
in other words, P • is a minimal free resolution of some X• ∈ C↑(qf A). According
to [6], we define the linear part lin(P •) of P • as follows:

(1) lin(P •) is a complex with lin(P •)i = P i.
(2) The matrices representing the differentials of lin(P •) are given by “erasing”

all the entries of degree ≥ 2 (i.e., replacing them by 0) from the matrices
representing the differentials of P •.

It is easy to check that lin(P •) is actually a complex. But, even if P• is a minimal
free resolution of M ∈ qf A, lin(P•) is not acyclic (i.e., Hi(lin(P•)) ̸= 0 for some
i > 0) in general.

Definition 3.7 (Herzog-Iyengar [8]). Let M ∈ qf A and P• its minimal graded free
resolution. We call

ldA(M) := sup{ i | Hi(lin(P•)) ̸= 0 }
the linearity defect of M .

We say M ∈ *mod A has a linear (free) resolution if there is some l ∈ Z such
that βi, j(M) ̸= 0 implies that j − i = l. In this case, the minimal free resolution
P• of M coincides with lin(P•), and ldA(M) = 0. As shown in [10, Theorem 5.4],
we have

regA(M) = inf{ i | M≥i :=
⊕
j≥i

Mj has a linear resolution}.

For i ∈ Z and M ∈ qf A, M⟨i⟩ denotes the submodule of M generated by the degree
i component Mi. We say M ∈ qf A is componentwise linear, if M⟨i⟩ has a linear
resolution for all i ∈ Z.

As shown in [11, 12], for M ∈ qf A, we have

ldA(M) = inf{ i | Ωi(M) is componentwise linear },
where Ωi(M) is the ith syzygy of M .

Clearly, we have ldA(M) ≤ proj. dimA(M). The inequality is strict quite often.
For example, we have proj. dimA(M) = ∞ and ldA(M) < ∞ for many M . On the
other hand, we sometimes have ldA(M) = ∞.



The next result connects the linearity defect with the regularity via Koszul du-
ality. For a complex X•, H(X•) denotes the complex such that H(X•)i = H i(X•)
for all i and all differentials are 0.

Theorem 3.8 (cf. [6, Theorem 3.1]). Let X• ∈ D↑(qf A), and P • a minimal free
resolution of FA(X•) ∈ D↑(qf A!). Then we have

lin(P •) = FA ◦ H(X•).

Hence, for M ∈ qf A,

ldA(M) = sup{ regA!(H i(FA(M))) + i | i ∈ Z}.

4. Koszul Commutative Algebras and their Dual

If A is a Koszul commutative algebra and S := SymK A1 is the polynomial ring,
then we have A = S/I for a graded ideal I of S. In this situation, A is Golod
if and only if I has a 2-linear resolution as an S-module (i.e., βi,j(I) ̸= 0 implies
j = i+2), see [8, Proposition 5.8]. We say A comes from a complete intersection by
a Golod map (see [2, 8]), if there is an intermediate graded ring R with S ³ R ³ A
satisfying the following conditions:

(1) R is a complete intersection.
(2) Let J be the graded ideal of R such that A = R/J . Then J has a 2-linear

resolution as an R-module.

If this is the case, R is automatically Koszul. Clearly, if A itself is complete inter-
section or Golod, then it comes from a complete intersection by a Golod map.

Example 4.1. Set S = K[s, t, u, v, w] and A = S/(st, uv, sw). Then A is neither
Golod nor complete intersection, but comes from a complete intersection by a Golod
map (as an intermediate ring, take S/(st, uv)).

The next result plays a key role in this section.

Theorem 4.2 (Avramov-Eisenbud [1]). Let A be a Koszul commutative algebra,
and S := SymK A1 the polynomial ring. Then we have regA(M) ≤ regS(M) < ∞
for all M ∈ *mod A.

On the other hand, even if A is Koszul and commutative, ldA(M) can be infinite
for some M ∈ *mod A, as pointed out in [8]. But we have the following.

Theorem 4.3 (Herzog-Iyengar [8]). Let A be a Koszul commutative algebra. If
A comes from a complete intersection by a Golod map (e.g., A itself is complete
intersection or Golod), then ldA(M) < ∞ for all M ∈ *mod A.

Now we are interested in regA!(N) and ldA!(N) for a Koszul commutative algebra
A. First, we recall that a graded left A!-module has a natural graded right A!-
module structure in this case, and vice versa (c.f. [8, §3]). In particular, A! is left
noetherian (resp. graded coherent) if and only if it is right noetherian (resp. graded
coherent).

Theorem 4.4. If A is a Koszul commutative algebra, we have the following.



(1) Let N ∈ *mod A!. If regA!(N) < ∞, then ldA!(N) < ∞.
(2) The following conditions are equivalent.

(a) ldA(M) < ∞ for all M ∈ *mod A.
(a’) ldA(M) < ∞ for all M ∈ *mod A with M =

⊕
i=0,1 Mi.

(b) regA!(N) < ∞ for all N ∈ *fp A!.
(3) Let N ∈ qf A!. If there is some c ∈ N such that dimK Ni ≤ c for all i ∈ Z,

then ldA!(N) < ∞.

Proof. (1) The complex FA!(N) is always bounded above. Hence if regA!(N) < ∞
then H i(FA!(N)) ̸= 0 for only finitely many i by Theorem 3.5. Thus the assertion
follows from Theorems 3.8 and 4.2.

(2) The implication (a) ⇒ (a′) is clear.
(a′) ⇒ (b): First assume that N ∈ *fp A! has a presentation of the form

A!(−1)⊕β1 → A!⊕β0 → N → 0. Then there is M ∈ *mod A with M =
⊕

i=0,1 Mi

such that FA(M) gives this presentation. Since ldA(M) < ∞, we have regA!(N) <
∞ by Theorem 3.8.

Next take an arbitrary N ∈ *fp A!. For a sufficiently large s, N≥s :=
⊕

i≥s Ni has

a presentation of the form A!(−s − 1)⊕β1 → A!(−s)⊕β0 → N≥s → 0. (To see this,
consider the short exact sequence 0 → N≥s → N → N/N≥s → 0, and use the fact
that regA!(N/N≥s) < s.) We have shown that regA!(N≥s) < ∞. So regA!(N) < ∞
by the above short exact sequence.

(b) ⇒ (a): By Lemma 3.2, A! is left graded coherent. So *fp A! is an abelian
category. Each term of FA(M) is a finite free A!-module, in particular, FA(M) ∈
C−(*fp A!). Hence we have H i(FA(M)) ∈ *fp A! for all i. By the assumption,
regA!(H i(FA(M))) < ∞. On the other hand, H i(FA(M)) ̸= 0 for finitely many i
by Theorems 3.5 and 4.2. So the assertion follows from Theorem 3.8.

(3) Let S be the set of all graded submodules of A⊕c which are generated by
elements of degree 1. By Brodmann [4], there is some C ∈ N such that regA(M) ≤
regS(M) < C for all M ∈ S. Here S denotes the polynomial ring SymK A1. To
prove the assertion, it suffices to show that regA(H i(FA!(N)))+ i ≤ C for all i. We
may assume that i = 0. Note that H0(FA!(N)) is the cohomology of the sequence

A ⊗K (N1)
∗ ∂−1

−→ A ⊗K (N0)
∗ ∂0

−→ A ⊗K (N−1)
∗.

Since Im(∂0)(−1) is a submodule of A⊕ dimK N−1 generated by elements of degree 1
and dimK N−1 ≤ c, we have regA(Im(∂0)) < C. Consider the short exact sequence

0 −→ Ker(∂0) −→ A ⊗K (N0)
∗ −→ Im(∂0) −→ 0.

Since regA(A ⊗K (N0)
∗) = 0, we have regA(Ker(∂0)) ≤ C. Similarly, we have

regA(Im(∂−1)) < C. By the short exact sequence

0 −→ Im(∂−1) −→ Ker(∂0) −→ H0(FA!(N)) −→ 0,

we are done. ¤

Remark 4.5. In Theorem 4.4 (2), the implications (a) ⇒ (a′) ⇔ (b) hold for a
general Koszul algebra.



If A is a (not necessarily commutative) Koszul algebra satisfying regA(M) < ∞
for all M ∈ *mod A, then Theorem 4.4 (1) and (2) hold for A.

By the above remark and Lemma 3.2, we have the following.

Corollary 4.6. Let A be a Koszul algebra. If ldA(M) < ∞ for all M ∈ *mod A,
then A! is left graded coherent.

In [2, Corollary 3], Backelin and Roos showed that if A is a Koszul commutative
algebra which comes from a complete intersection by a Golod map then A! is
left graded coherent. Moreover, they actually proved that regA!(N) < ∞ for all
N ∈ *fp A! (see [2, Corollary 2] and [8, Lemma 5.1]). So we have ldA(M) < ∞ for
all M ∈ *mod A by Theorem 4.4, that is, we get a result of Herzog and Iyengar
(Theorem 4.3). Their original proof is essentially based on this line too. While, in
the case when A is complete intersection, we have another proof using the notion
of balanced dualizing complex as stated in the introduction.

Lemma 4.7. Assume that regA!(N) < ∞ for all N ∈ *fp A!. Let X• ∈ Db(qf A!)
be a bounded complex. Then X• is strongly bounded if and only if H i(X•) ∈ *fp A!

for all i.

Proof. (Sufficiency): If H i(X•) ∈ *fp A!, then regA!(H i(X•)) < ∞. Since X• is
bounded, we have regA!(X•) < ∞ by Lemma 3.4 (4).

(Necessity): Assume that X• is strongly bounded (more generally, βi(X•) < ∞
for all i). Let P • be a minimal free resolution of X•. Clearly, P • ∈ C−(*fp A!).
By Corollary 4.6, *fp A! is an abelian category. Hence each H i(P •) (∼= H i(X•))
belongs to *fp A!. ¤
Theorem 4.8. Let A be a Koszul commutative algebra such that ldA(M) < ∞ for
all M ∈ *mod A (e.g. A comes from a complete intersection by a Golod map).
Then Koszul duality gives an equivalence Db(*mod A) ∼= Db(*fp A!)op.

Proof. By Proposition 3.6, it suffices to show that Db(*mod A) = Dsb(qf A) and
Db(*fp A!) = Dsb(qf A!).

Let us consider the first equality (this holds for a general Koszul commutative
algebra). If X• ∈ Db(*mod A), then regA(X•) < ∞ by Lemma 3.4 (4) and The-
orem 4.2. Hence we have X• ∈ Dsb(qf A). Conversely, if Y • ∈ Dsb(qf A), then
βi(Y •) < ∞ for all i, and the minimal free resolution of Y • is a complex of finite
free modules. So we have Y • ∈ Db(*mod A). Hence Db(*mod A) = Dsb(qf A).

Next we will show that Db(*fp A!) = Dsb(qf A!). By Corollary 4.6, *fp A! is an
abelian category, and closed under extensions in qf A!. Since a free A!-module of
finite rank belongs to *fp A!, this category has enough projectives. So we have
Db(*fp A!) = Db

*fp A!(qf A!) = Dsb(qf A!). Here the first equality follows from [7,

Exercise III.2.2] and the second one follows from Lemma 4.7. ¤
Corollary 4.9. If A is a Koszul complete intersection, then Koszul duality gives
Db(*mod A) ∼= Db(*mod A!)op.

In the rest of the paper, we study the linearity defect over the exterior algebra
E :=

∧
⟨y1, . . . , yn⟩. Eisenbud et al. [6] showed that ldE(N) < ∞ for all N ∈



*mod E. Now this is a special case of Theorem 4.4. But the behavior of ldE(N) is
still mysterious.

If n ≥ 2, then we have sup{ ldE(N) | N ∈ *mod E } = ∞. In fact, N :=
E/ soc(E) satisfies ldE(N) ≥ 1. And the ith cosyzygy Ω−i(N) of N (since E is
selfinjective, we can consider cosyzygies) satisfies ldE(Ω−i(N)) > i. But we have an
upper bound of ldE(N) depending only on max{ dimK Ni | i ∈ Z } and n. Before
stating this, we recall a result on regS(M) for M ∈ *mod S.

Theorem 4.10 (Brodmann and Lashgari, [5, Theorem 2.6]). Let S = k[x1, . . . , xn]
be the polynomial ring. Assume that a graded submodule M ⊂ S⊕c is generated by
elements whose degrees are at most d. Then we have regS(M) ≤ cn!(2d)(n−1)!.

When c = 1 (i.e., when M is an ideal), the above bound is a classical result,
and there is a well-known example which shows the bound is rather sharp. For our
study on ldE(N), the case when d = 1 (but c is general) is essential.

Proposition 4.11. Let E =
∧
⟨y1, . . . , yn⟩ be an exterior algebra, and N ∈ *mod E.

Set c := max{ dimK Ni | i ∈ Z }. Then ldE(N) ≤ cn!2(n−1)!.

Proof. Similar to the proof of Theorem 4.4 (3). ¤
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