GOTZMANN IDEALS OF THE POLYNOMIAL RING

SATOSHI MURAI

ABSTRACT. Let A denote the polynomial ring in n variables over a field. All the Gotzmann ideals of A with at most n generators will be classified. This is a joint work with Takayuki Hibi.

1. INTRODUCTION

Let $A = K[x_1, \ldots, x_n]$ denote the polynomial ring in n variables over a field Kwith each deg $x_i = 1$. Let $<_{\text{lex}}$ be the lexicographic order on A induced by the ordering $x_1 > x_2 > \cdots > x_n$. Recall that a *lexsegment* ideal of A is a monomial ideal I of A such that, for monomials u and v of A with $u \in I$, deg $u = \deg v$ and $u <_{\text{lex}} v$, one has $v \in I$. Let I be a homogeneous ideal of A and I^{lex} the (unique) lexsegment ideal ([2] and [11]) with the same Hilbert function as I. A homogeneous ideal I of A is said to be *Gotzmann* if the number of minimal generators of I is equal to that of I^{lex} . Gotzmann ideals were introduced by Herzog and Hibi [9] in the study of maximal Betti numbers of ideals for a given Hilbert function. Indeed, Herzgo and Hibi proved that a homogeneous ideal I is Gotzmann if and only if the graded Betti numbers of I are equal to those of I^{lex} . Our goal is to classify all the Gotzmann ideals of A generated by at most n homogeneous polynomials.

A homogeneous ideal I of A is said to have a *critical function* if I^{lex} is generated by at most n monomials. Let $1 \leq s \leq n$ and f_1, \ldots, f_s homogeneous polynomials with

$$f_i \in K[x_i, x_{i+1}, \dots, x_n]$$

for each $1 \leq i \leq s$ and with deg $f_s > 0$. In [7] the ideal $I_{(f_1,\ldots,f_s)}$ of A defined by

(1)
$$I_{(f_1,\dots,f_s)} = (f_1x_1, f_1f_2x_2,\dots, f_1f_2\cdots f_{s-1}x_{s-1}, f_1f_2\cdots f_s)$$

was introduced. A homogeneous ideal I of A is called *canonical critical* if $I = I_{(f_1,\ldots,f_s)}$ for some homogeneous polynomials f_1,\ldots,f_s with $f_i \in K[x_i,x_{i+1},\ldots,x_n]$ for each $1 \leq i \leq s$ and with deg $f_s > 0$, where $1 \leq s \leq n$.

Theorem 1.1. Given a homogeneous ideal I of $A = K[x_1, \ldots, x_n]$, the following conditions are equivalent:

- (i) I has a critical Hilbert function;
- (ii) there exists a linear transformation φ on A such that $\varphi(I)$ is a canonical critical ideal;
- (iii) I is a Gotzmann ideal generated by at most n homogeneous polynomials.

The author is supported by JSPS Research Fellowships for Young Scientists.

2. Universal lexsegment ideals and canonical critical ideals

In this section we study universal lexsegment ideals and canonical critical ideals. A monomial ideal I of $A = K[x_1, \ldots, x_n]$ is said to be *universal lexsegment* if for all integers $m \ge 0$ the ideal $I \cdot K[x_1, \ldots, x_{n+m}]$ is a lexsegment ideal of $K[x_1, \ldots, x_{n+m}]$. Universal lexsegment ideals were introduced by Babson, Novik and Thomas [1]. We recall the following easy fact.

Lemma 2.1. Let I be a monomial ideal of A. The following conditions are equiva*lent:*

- (i) I is universal lexsegment;
- (ii) I is a lexsegment ideal generated by at most n monomials;
- (iii) there exist integers $b_1, \ldots, b_s \in \mathbb{Z}_{>0}$ with $1 \leq s \leq n$ such that

(2)
$$I = (x_1^{b_1+1}, x_1^{b_1} x_2^{b_2+1}, \dots, x_1^{b_1} x_2^{b_2} \cdots x_{s-1}^{b_{s-1}} x_s^{b_s+1}).$$

Proof. First, we will show that (ii) implies (iii). Let $I = (u_1, \ldots, u_s)$ be a lexsegment ideal with $s \leq n$. Suppose deg $u_1 \leq \cdots \leq u_s$ and $u_i >_{\text{lex}} u_{i+1}$ if deg $u_i = \text{deg } u_{i+1}$. Since $u_1 = x_1^{\text{deg } u_1}$, one has $u_1 = x_1^{b_1+1}$. Let $1 < k \leq \min\{n, \delta\}$ and suppose that $u_{k-1} = x_1^{b_1} x_2^{b_2} \cdots x_{k-1}^{b_{k-1}+1}$. Since the monomial ideal (u_1, \ldots, u_{k-1}) is lexsegment, it follows that the smallest monomial with respect to $<_{\text{lex}}$ of degree deg u_k belonging to (u_1,\ldots,u_{k-1}) is $u_{k-1}x_n^{b_k}$. Since u_k is the biggest monomial with respect to $<_{\text{lex}}$ which satisfies deg $u_k = deg(u_{k-1}x_n^{b_k})$ and $u_k <_{lex} u_{k-1}x_n^{b_k}$, we have $u_k = (u_{k-1}/x_{k-1})x_k^{b_k+1}$. Thus $u_k = x_1^{b_1}x_2^{b_2}\cdots x_{k-1}^{b_{k-1}}x_k^{b_k+1}$, as desired.

The implication (iii) \Rightarrow (i) is easy. We will show that (i) implies (ii). Suppose that I is universal lexsegment with $|G(I)| \ge n+1$. What we must prove is I is not universal lexsegment. Since $I' = I \cdot K[x_1, \ldots, x_{n+1}]$ is a lexsegment ideal with $|G(I')| \ge n+1$, there exists a lexsegment ideal J of $K[x_1, \ldots, x_{n+1}]$ such that $G(J) \subset G(I')$ and |G(J)| = n + 1. Then, by the implication (ii) \Rightarrow (iii), J must contains a generator which is divisible by x_{n+1} . Since $G(J) \subset G(I') = G(I) \subset A$, this is a contradiction.

Example 2.2. (a) The lexsegment ideal $(x_1^2, x_1 x_2^2)$ of $K[x_1, x_2]$ is universal lexseg-

ment. In fact, the ideal $(x_1^2, x_1x_2^2)$ of $K[x_1, \ldots, x_m]$ is lexsegment for all $m \ge 2$. (b) The lexsegment ideal $(x_1^3, x_1^2x_2, x_1x_2^2)$ of $K[x_1, x_2]$ is not universal lexsegment. Indeed, since $x_1x_2^2 <_{\text{lex}} x_1^2x_3$ in $K[x_1, x_2, x_3]$, the ideal $(x_1^3, x_1^2x_2, x_1x_2^2)$ of $K[x_1, x_2, x_3]$ is not lexsegment.

By using Lemma 2.1, it is easy to characterize critical Hilbert functions. Indeed, it was shown in [12] that the Hilbert function H(I,t) of the universal lexsegment ideal (2) is given by

(3)
$$H(I,t) = \binom{t - a_1 + n - 1}{n - 1} + \dots + \binom{t - a_s + n - s}{n - s},$$

where the sequence (a_1, a_2, \ldots, a_s) is defined by setting

$$a_i = \deg x_1^{b_1} \cdots x_{i-1}^{b_{i-1}} x_i^{b_i+1}, \quad 1 \le i \le s.$$

Since a lexsegment ideal with a given Hilbert function is uniquely determined, it follows that a homogeneous ideal I of A is critical if and only if there exists a sequence (a_1, \ldots, a_s) of integers with $0 < a_1 \le a_2 \le \cdots \le a_s$, where $1 \le s \le n$, such that the Hilbert function of I is of the form (3).

Definition 2.3. A homogeneous ideal I of A with the Hilbert function (3) will be called a *critical ideal of type* (a_1, a_2, \ldots, a_s) .

Next, we study the property of canonical critical ideals. We require the following obvious facts.

Lemma 2.4. Let $1 < s \leq n$. Fix homogeneous polynomials f_1, \ldots, f_{s-1} with each $f_i \in K[x_i, \ldots, x_n]$. Let $g \in K[x_s, \ldots, x_n]$ be a homogeneous polynomial with deg g > 0. Then

$$f_1 f_2 \cdots f_{s-1} g \notin (f_1 x_1, f_1 f_2 x_2, \dots, f_1 f_2 \cdots f_{s-1} x_{s-1}).$$

Corollary 2.5. As a vector space over K the ideal (1) is the direct sum

(4)
$$I_{(f_1,\ldots,f_s)} = \left(\bigoplus_{j=1}^{s-1} (f_1\cdots f_j x_j) K[x_j,\ldots,x_n]\right) \bigoplus (f_1\cdots f_s) K[x_s,\ldots,x_n].$$

The above facts implies that canonical critical ideals are critical and Gotzmann.

Proposition 2.6. Let $I_{(f_1,\ldots,f_s)}$ denote the ideal (1).

- (a) $I_{(f_1,\ldots,f_s)}$ is a critical ideal of type (a_1,\ldots,a_s) , where $a_i = \deg f_1 f_2 \cdots f_i x_i$, $i = 1, \ldots, s 1$, and $a_s = \deg f_1 f_2 \cdots f_s$.
- (b) $I_{(f_1,\ldots,f_s)}$ is minimally generated by

(5)
$$\{f_1x_1, \ldots, f_1f_2 \cdots f_{s-1}x_{s-1}, f_1f_2 \cdots f_s\}.$$

(c) $I_{(f_1,\ldots,f_s)}$ is Gotzmann.

Proof. The direct sum decomposition (4) says that the Hilbert function of $I_{(f_1,\ldots,f_s)}$ is of the form (3) and, in addition, that $I_{(f_1,\ldots,f_s)}$ is minimally generated by (5). Thus (a) and (b) follow. Since the lexsegment ideal with the Hilbert function (3) is the universal lexsegment ideal (2), one has $|G((I_{(f_1,\ldots,f_s)})^{\text{lex}})| = s$. Hence $I_{(f_1,\ldots,f_s)}$ is Gotzmann, as required.

3. Proof of Theorem 1.1

In the previous section, we already see that canonical critical ideals are Gotzmann ideals having at most n homogeneous generators. On the other hand, it is clear from the definition that Gotzmann ideals generated by at most n homogeneous generators have a critical Hilbert function. Thus, to complete the proof of Theorem 1.1, what we must prove is any critical ideal can be transformed into canonical critical ideals by a linear transformation of A.

For a monomial u of A, we write m(u) for the largest integer j for which x_j divides u. A monomial ideal I of A is called *stable* if, for each monomial u belonging to G(I) and for each $1 \leq i < m(u)$, one has $(x_i u)/x_{m(u)} \in I$.

Lemma 3.1. A monomial ideal I of A which is both critical and stable is universal lexsegment.

Proof. (Sketch.) Suppose $|G(I^{\text{lex}})| = s$. It follows from [12] that the projective dimension of S/I is equal to s. Thus, by the Eliahou–Kervaire resolution [6], it follows that there exists a monomial $u_s \in G(I)$ such that $m(u_s) = s$. Then, by using the definition of stable ideals, a straightforward computation implies that there are monomials $u_1, \ldots, u_{s-1} \in G(I)$ such that $m(u_k) = k$ for $k = 1, 2, \ldots, s - 1$ and deg $u_1 \leq \cdots \leq \deg u_s$ (e.g., [10, Lemma 1.3]). Since $|G(I)| \leq |G(I^{\text{lex}})| = s$, we have $G(I) = \{u_1, \ldots, u_s\}$.

Clearly, $u_1 = x_1^{b_1+1}$ for some $b_1 \ge 0$. Then, by arguing inductively, a routine computation implies that $I = (u_1, \ldots, u_s)$ is an ideal of the form (2).

Let I be an ideal of A. When K is infinite, given a monomial order σ on A, we write $gin_{\sigma}(I)$ for the generic initial ideal ([5] and [8]) of I with respect to σ .

Lemma 3.2. Let I be a critical ideal of A. Then, for an arbitrary monomial order σ on A induced by the ordering $x_1 > \cdots > x_n$, the generic initial ideal $gin_{\sigma}(I)$ is stable. Thus in particular $gin_{\sigma}(I)$ is universal lexsegment.

Proof. Since $\operatorname{gin}_{\sigma}(I)$ is a critical monomial ideal, it follows from [12, Corollary 1.8] that $\operatorname{gin}_{\sigma}(I)$ is Gotzmann. Thus in particular $\operatorname{gin}_{\sigma}(I)$ is componentwise linear [9]. Hence [3, Lemma 1.4] says that $\operatorname{gin}_{<\operatorname{rev}}(\operatorname{gin}_{\sigma}(I)) = \operatorname{gin}_{\sigma}(I)$ is stable. Here $<_{\operatorname{rev}}$ is the reverse lexicographic order on A induced by the ordering $x_1 > \cdots > x_n$. Since $\operatorname{gin}_{\sigma}(I)$ is both critical and stable, it follows from Lemma 3.1 that $\operatorname{gin}_{\sigma}(I)$ is universal lexsegment.

Note that the above lemma is obvious in characteristic 0, since generic initial ideals are stable in characteristic 0.

Lemma 3.3. Suppose that a homogeneous ideal I of A is a critical ideal of type (a_1, \ldots, a_s) , where $2 \le s \le n$. Then there exists a homogeneous polynomial f of A with deg $f = a_1 - 1$ together with a homogeneous ideal J of A such that

$$I = f \cdot J.$$

Proof. (Sketch.) By considering an extension field, we may assume that K is infinite. Then there is a linear transformation φ with $\ln_{\leq_{\text{lex}}}(\varphi(I)) = \operatorname{gin}_{\leq_{\text{lex}}}(I)$. Considering $\varphi(I)$ instead of I, one may assume that $\operatorname{in}_{\leq_{\text{lex}}}(I) = \operatorname{gin}_{\leq_{\text{lex}}}(I)$. Lemma 3.2 says that $\operatorname{in}_{\leq_{\text{lex}}}(I)$ is universal lexsegment. Hence

$$\operatorname{in}_{<_{\operatorname{lex}}}(I) = (x_1^{b_1+1}, x_1^{b_1} x_2^{b_2+1}, \dots, x_1^{b_1} \cdots x_{s-1}^{b_{s-1}} x_s^{b_s+1}),$$

where $b_i = a_i - a_{i-1}, 1 \le i \le s$, with $a_0 = 1$.

To simplify the notation, let $u_i = x_1^{b_1} \cdots x_i^{b_i}$ for $i = 1, \ldots, s$. Let $\mathcal{G} = \{g_1, \ldots, g_s\}$ be a Gröbner basis of I, where g_i is a homogeneous polynomial of A with $\ln_{\leq_{\text{lex}}}(g_i) = u_i x_i$ for each $1 \leq i \leq s$, and $\mathcal{G}' = \{g_2, \ldots, g_s\}$. We show that \mathcal{G}' is a Gröbner basis with respect to \leq_{lex} . For $2 \leq i < j \leq s$, consider the S-polynomial

$$S(g_i, g_j) = (u_j/u_i)x_jg_i - x_ig_j.$$

Then, since $\operatorname{in}_{\leq_{\operatorname{lex}}}(g_1) >_{\operatorname{lex}} \operatorname{in}_{\leq_{\operatorname{lex}}}(S(g_i, g_j))$ and since \mathcal{G} is a Gröbner basis, a remainder of the S-polynomial of g_i and g_j with respect to \mathcal{G}' can be 0. Hence \mathcal{G}' is a Gröbner basis with respect to $\leq_{\operatorname{lex}}$, as desired.

Now, we prove Lemma 3.3 by using induction on s. Suppose s > 2 (the proof for s = 2 is similar). Let J be the ideal of A generated by \mathcal{G}' . Since

$$\operatorname{in}_{<_{\operatorname{lex}}}(J) = (u_2 x_2, \dots, u_s x_s) = x_1^{b_1} (x_2^{b_2+1}, x_2^{b_2} x_3^{b_3+1}, \dots, x_2^{b_2} \cdots x_{s-1}^{b_{s-1}} x_s^{b_s+1})$$

and since

$$(x_2^{b_2+1}, x_2^{b_2}x_3^{b_3+1}, \dots, x_2^{b_2}\cdots x_{s-1}^{b_{s-1}}x_s^{b_s+1})$$

is universal lexsegment in $K[x_2, \ldots, x_n, x_1]$, the ideal J is a critical ideal of type (a_2, \ldots, a_s) . The induction hypothesis guarantees the existence of a homogeneous polynomial f_0 of A with $\deg(f_0) = a_2 - 1$ which divides each of g_2, \ldots, g_s . Since $\ln_{\leq_{\text{lex}}}(f_0)$ divides $\ln_{\leq_{\text{lex}}}(g_i) = u_i x_i$ for each $1 < i \leq s$, one has $\ln_{\leq_{\text{lex}}}(f_0) = u_2$. Let $g'_i = g_i/f_0$ for $i = 2, \ldots, s$. Thus in particular $\ln_{\leq_{\text{lex}}}(g'_2) = u_2 x_2/u_2 = x_2$.

Now, divide the S-polynomial of g_1 and g_2 by \mathcal{G} , say,

$$x_2^{b_2+1}g_1 - x_1(f_0g_2') = q_1g_1 + q_2(f_0g_2') + \dots + q_s(f_0g_s'),$$

where q_1, \ldots, q_s are homogeneous polynomials of A with

$$\operatorname{in}_{\leq_{\operatorname{lex}}}(q_1g_1) \leq_{\operatorname{lex}} \operatorname{in}_{\leq_{\operatorname{lex}}}(x_2^{b_2+1}g_1 - x_1(f_0g_2'))$$

and with

$$\inf_{\leq_{\text{lex}}} (q_k(f_0 g'_k)) \leq_{\text{lex}} \inf_{\leq_{\text{lex}}} (x_2^{b_2 + 1} g_1 - x_1(f_0 g'_2))$$

for each $2 \leq k \leq s$. Let

$$f_0 h = q_2(f_0 g'_2) + \dots + q_s(f_0 g'_s).$$

Thus

$$(x_2^{b_2+1} - q_1)g_1 = f_0(x_1g_2' + h).$$

Since $\operatorname{in}_{\leq_{\operatorname{lex}}}(x_2^{b_2+1}-q_1) = x_2^{b_2+1}$, $\operatorname{in}_{\leq_{\operatorname{lex}}}(g_1) = x_1^{b_1+1}$ and $\operatorname{in}_{\leq_{\operatorname{lex}}}(x_1g_2'+h) = x_1x_2$, it follows that $x_1g_2'+h$ can divide neither $x_2^{b_2+1}-q_1$ nor g_1 . Thus $x_1g_2'+h$ is a product $(x_1+h_1)(x_2+h_2)$, where h_1 and h_2 are homogeneous polynomials of A with $\deg h_1 = \deg h_2 = 1$, such that $x_1 + h_1$ divides g_1 and $x_2 + h_2$ divides $x_2^{b_2+1}-q_1$. Let $f = g_1/(x_1+h_1)$. Then $\deg f = a_1-1$ and f divides both g_1 and f_0 . \Box

We are now in the position to give a proof of Theorem 1.1.

Proof of Theorem 1.1. What we must prove is (i) implies (ii). This will be achieved by induction on s. Let $I \subset A$ be a critical ideal of type (a_1, \ldots, a_s) . If s = 1, then the statement is obvious.

Let s > 1. Lemma 3.3 guarantees that $I = f \cdot J$, where f is a homogeneous polynomial of A with deg $f = a_1 - 1$ and where J is a homogeneous ideal of A. The Hilbert function of J is $H(J,t) = H(I,t+a_1-1)$. Hence J is a critical ideal of type $(1, a_2 - a_1 + 1, \ldots, a_s - a_1 + 1)$. Since $H(J,1) \neq 0$, there exists a linear transformation φ on A with $x_1 \in \varphi(J)$. Let J' be the ideal

$$J' = \varphi(J) \cap K[x_2, \dots, x_n]$$

of $K[x_2,\ldots,x_n]$. Then

$$\varphi(J) = x_1 K[x_1, \dots, x_n] \bigoplus J'.$$

A straightforward computation implies that the ideal J' of $K[x_2, \ldots, x_n]$ is a critical ideal of type $(a_2 - a_1 + 1, \ldots, a_s - a_1 + 1)$. The induction hypothesis then guarantees the existence of a linear transformation ψ on $K[x_2, \ldots, x_n]$ such that $\psi(J')$ is a canonical critical ideal of $K[x_2, \ldots, x_n]$, say

$$\psi(J') = (f_2 x_2, \dots, f_2 \cdots f_{s-1} x_{s-1}, f_2 \cdots f_s),$$

where $f_i \in K[x_i, x_{i+1}, \ldots, x_n]$ for each $2 \leq i \leq s$ and where deg $f_s > 0$. Now, regarding ψ to be a linear transformation on A by setting $\psi(x_1) = x_1$, one has

$$\begin{aligned} (\psi \circ \varphi)(I) &= ((\psi \circ \varphi)(f)) \cdot ((\psi \circ \varphi)(J)) \\ &= ((\psi \circ \varphi)(f)) \cdot (\psi(x_1 A \bigoplus J')) \\ &= (\psi \circ \varphi)(f) \cdot (x_1 A \bigoplus \psi(J')). \end{aligned}$$

Let $f_1 = (\psi \circ \varphi)(f)$. Then it follows that

$$(\psi \circ \varphi)(I) = (f_1 x_1, f_1 f_2 x_2, \dots, f_1 f_2 \cdots f_{s-1} x_{s-1}, f_1 f_2 \cdots f_s)$$

as desired.

References

- E. Babson, I. Novik and R. Thomas, Reverse lexicographic and lexicographic shifting, J. Algebraic Combin. 23 (2006), 107–123.
- [2] A. M. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993), 2317–2334.
- [3] A. Conca, J. Herzog and T. Hibi, Rigid resolutions and big Betti numbers, Comment. Math. Helv. 79 (2004), 826–839.
- [4] W. Bruns and J. Herzog, "Cohen-Macaulay Rings," Revised Edition, Cambridge University Press, Cambridge, 1996.
- [5] D. Eisenbud, "Commutative Algebra. With a View Toward Algebraic Geometry," Springer-Verlag, New York, 1995.
- [6] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), 1–25.
- [7] G. Gotzmann, Some irreducible Hilbert schemes, Math. Z. 201 (1989), 13–17.
- [8] M. Green, Generic initial ideals, in "Six Lectures on Commutative Algebra" (J. Elias, J. M. Giral, R. M. Miró-Roig and S. Zarzuela, Eds.), Birhäuser, Basel, 1998, pp. 119–186.
- [9] J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.
- [10] J. Herzog, T. Hibi, S. Murai and Y. Takayama, Componentwise linear ideals with minimal or maximal Betti numbers, Ark. Mat., to appear.
- [11] H. A. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993), 2335–2350.
- [12] S. Murai and T. Hibi, The depth of an ideal with a given Hilbert function, Proc. Amer. Math. Soc., to appear.

SATOSHI MURAI, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: s-murai@ist.osaka-u.ac.jp