Gröbner bases for the polynomial ring with infinite variables and their applications

Kei-ichiro Iima and Yuji Yoshino (Okayama University)

1 Introduction

Recall that a sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ of positive integers is called a partition of a non-negative integer n if the equality $\lambda_1 + \lambda_2 + \dots + \lambda_r = n$ holds and $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \geq 1$. In such a case we denote it by $\lambda \vdash n$. We are concerned with the following sets of partitions:

 $A(n) = \{ \lambda \vdash n \mid \lambda_i \equiv \pm 1 \pmod{6} \},$ $B(n) = \{ \lambda \vdash n \mid \lambda_i \equiv \pm 1 \pmod{3}, \quad \lambda_1 > \lambda_2 > \dots > \lambda_r \},$ $C(n) = \{ \lambda \vdash n \mid \text{ each } \lambda_i \text{ is odd, and}$ any number appears in λ_i 's at most two times }.

It is known by famous Schur's equalities that all these sets A(n), B(n) and C(n) have the same cardinality for all $n \in \mathbb{N}$. It is also known that the one-to-one correspondences among these three sets are realized in some combinatorial way using 2-adic or 3-adic expansions of integers. In this article we reconstruct such one-to-one correspondences by using the theory of Gröbner bases. For this, we need to extend the theory of Gröbner bases to a polynomial ring with infinitely many variables.

2 Gröbner bases

Throughout this article, let k be any field and let $S = k[x_1, x_2, ...]$ be a polynomial ring with countably infinite variables. We denote by $\mathbb{Z}_{\geq 0}^{(\infty)}$ the set of all sequences $a = (a_1, a_2, ...)$ of integers where $a_i = 0$ for all i but finite number of integers. Also we denote by Mon(S) the set of all monomials

in S. Since any monomial is described uniquely as $x^a = \prod_i x_i^{a_i}$ for some $a = (a_1, a_2, \ldots) \in \mathbb{Z}_{\geq 0}^{(\infty)}$, we can identify these sets:

$$Mon(S) \cong \mathbb{Z}_{>0}^{(\infty)}.$$

If we attach degree on S by deg $x_i = d_i$, then a monomial x^a has degree deg $x^a = \sum_{i=1}^{\infty} a_i d_i$. In the rest of the paper, we assume that the degrees d_i 's are chosen in such a way that there are only a finite number of monomials of degree d for each $d \in \mathbb{N}$. For example, the simplest way of attaching degree is that deg $x_i = i$ for all $i \in \mathbb{N}$.

Definition 2.1. A total order > on Mon(S) is called a monomial order if (Mon(S), >) is a well-ordered set, and it is compatible with the multiplication of monomials, i.e. $x^a > x^b$ implies $x^c x^a > x^c x^b$ for all $x^a, x^b, x^c \in Mon(S)$.

Note that the ordering $x_1 > x_2 > x_3 > \cdots$ is not acceptable for monomial order, since it violates the well-ordering condition. On the other hand, if we are given any monomial order >, then, renumbering the variables, we may assume that $x_1 < x_2 < x_3 < \cdots$.

The following are examples of monomial orders on Mon(S).

Example 2.2. Let $a = (a_1, a_2, \ldots)$ and $b = (b_1, b_2, \ldots)$ be elements in $\mathbb{Z}_{\geq 0}^{(\infty)}$.

- (1) The pure lexicographic order $>_{pl}$ is defined in such a way that $x^a >_{pl} x^b$ if and only if $a_i > b_i$ for the last index *i* with $a_i \neq b_i$.
- (2) The degree (resp. anti-) lexicographic order $>_{dl}$ (resp. $>_{dal}$) is defined in such a way that $x^a >_{dl} x^b$ (resp. $x^a >_{dal} x^b$) if and only if either $\deg x^a > \deg x^b$ or $\deg x^a = \deg x^b$ and $a_i > b_i$ for the last (resp. first) index *i* with $a_i \neq b_i$.
- (3) The degree (resp. anti-) reverse lexicographic order $>_{drl}$ (resp. $>_{darl}$) is defined as follows: $x^a >_{drl} x^b$ (resp. $x^a >_{darl} x^b$) if and only if either deg $x^a > \deg x^b$ or deg $x^a = \deg x^b$ and $a_i < b_i$ for the first (resp. last) index *i* with $a_i \neq b_i$.

These monomial orders are all distinct as shown in the following example in which deg $x_i = i$ for $i \in \mathbb{N}$:

x_4	$>_{dl}$	x_1x_3	$>_{dl}$	x_{2}^{2}	$>_{dl}$	$x_1^2 x_2$	$>_{dl}$	$x_1^4,$
x_1^4	$>_{dal}$	$x_1^2 x_2$	$>_{dal}$	$x_1 x_3$	$>_{dal}$	x_{2}^{2}	$>_{dal}$	$x_4,$
x_4	$>_{drl}$	x_{2}^{2}	$>_{drl}$	$x_1 x_3$	$>_{drl}$	$x_1^2 x_2$	$>_{drl}$	$x_1^4,$
x_1^4	$>_{darl}$	$x_1^2 x_2$	$>_{darl}$	x_{2}^{2}	$>_{darl}$	$x_1 x_3$	$>_{darl}$	x_4 .

Now suppose that a monomial order > on Mon(S) is given and we fix it. Then, any non-zero polynomial $f \in S$ is expressed as

$$f = c_1 x^{a(1)} + c_2 x^{a(2)} + \dots + c_r x^{a(r)}$$

where $c_i \neq 0 \in k$ and $x^{a(1)} > x^{a(2)} > \ldots > x^{a(r)}$. In such a case, the leading term, the leading monomial and the leading coefficient of f are given respectively as $\ell t(f) = c_1 x^{a(1)}$, $\ell m(f) = x^{a(1)}$ and $\ell c(f) = c_1$. For an ideal $I(\neq (0)) \subset S$, the initial ideal in(I) of I is defined to be the ideal generated by all the leading terms $\ell t(f)$ of non-zero polynomials $f \in I$. The Gröbner base of I is defined similarly to the ordinary case.

Definition 2.3. A subset \mathcal{G} of an ideal I is called a Gröbner base for I if $\{\ell t(g) \mid g \in \mathcal{G}\}$ generates the initial ideal in(I).

Since S is not a Noetherian ring, one cannot expect that there always exists a finite Gröbner base \mathcal{G} for a given ideal I. But any argument concerning Gröbner bases for an ideal of S can be reduced to the ordinary case for the polynomial rings with finite variables by the following theorem.

Theorem 2.4. Let I be an ideal of S. For a positive integer n, we set $S^{\langle n \rangle} = k[x_1, x_2, \ldots, x_n]$ which is a polynomial subring of S and set $I^{\langle n \rangle} = I \cap S^{\langle n \rangle}$. Now let \mathcal{G} be a subset of I.

- (1) Suppose that each $\mathcal{G} \cap S^{\langle n \rangle}$ is a Gröbner base for $I^{\langle n \rangle}$ for all $n \in \mathbb{N}$, then \mathcal{G} is a Gröbner base for I.
- (2) The converse holds when the monomial order is the pure lexicographic order.

The following division algorithm is proved using Theorem 2.4.

Theorem 2.5 (Division algorithm). Let \mathcal{G} be a subset of S. Then any non-zero polynomial $f \in S$ has an expression

$$f = f_1 g_1 + f_2 g_2 + \dots + f_s g_s + f',$$

with $g_i \in \mathcal{G}$ and $f_i, f' \in S$ such that the following conditions hold:

- (1) If we write $f' = \sum_{i=1}^{t} c_i x^{a(i)}$ with $c_i \neq 0 \in k$, then $x^{a(i)} \notin \{in(g) \mid g \in \mathcal{G}\}S$ for each $i = 1, 2, \ldots, t$.
- (2) If $f_i g_i \neq 0$, then $\ell m(f_i g_i) \leq \ell m(f)$.

Any such f' is called a remainder of f with respect to \mathcal{G} . Note that a remainder is in general not necessarily unique. But if \mathcal{G} is a Gröbner base for $I = \mathcal{G}S$, then a remainder of f with respect to \mathcal{G} is uniquely determined.

3 Applications

Let $S = k[x_1, x_2, \ldots]$ be a polynomial ring with countably infinite variables as before. We regard S as a graded k-algebra by defining $\deg(x_i) = i$ for each $i \in \mathbb{N}$, and denote by S_n the part of degree n of S for $n \in \mathbb{N}$. Note that there is a bijective mapping between the set of partitions of n and the set of monomials of degree n. In fact, the correspondence is given by mapping a partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r) \vdash n$ to the monomial $x^{\lambda} = x_{\lambda_r} \cdots x_{\lambda_2} x_{\lambda_1}$ of degree n.

Let W be any subset of N satisfying $pW \subset W$ for an integer $p \geq 2$, where $pW = \{pw \mid w \in W\}$. In this case, we consider a polynomial subring $R = k[x_i \mid i \in W]$ of S. We are interested in the following two subsets of partitions of n:

$$X(n) = \{ \lambda \vdash n \mid \lambda_i \in W \setminus pW \text{ for each } i \},$$

$$Y(n) = \{ \lambda \vdash n \mid \lambda_i \in W \text{ for each } i, \text{ and}$$

any number appears among λ_i 's at most $p-1$ times}.

Theorem 3.1. Under the circumstances above, consider the set of polynomials $\mathcal{G} = \{x_i^p - x_{pi} \mid i \in W\}$ in R. We adopt the degree anti-reverse lexicographic order on the set of monomials in R. Then \mathcal{G} is a reduced Gröbner base for the ideal \mathcal{GS} .

Furthermore, define a mapping $\varphi : X(n) \to Y(n)$ so that $x^{\varphi(\lambda)}$ is a remainder of x^{λ} with respect to \mathcal{G} for any $\lambda \in X(n)$. Then φ is a well-defined bijective mapping.

In particular we have that |X(n)| = |Y(n)| in the case above. Therefore, just considering the generating functions of |X(n)| and |Y(n)|, we see that the following functional equality holds;

$$\prod_{m \in W \setminus pW} \frac{1}{1 - t^m} = \prod_{m \in W} (1 + t^m + t^{2m} + \dots + t^{(p-1)m}).$$

Example 3.2. Recall that A(n), B(n) and C(n) are the sets of partitions given in Introduction.

- (1) If $W = \{n \in \mathbb{N} \mid n \equiv \pm 1 \pmod{3}\}$ and p = 2, then X(n) = A(n) and Y(n) = B(n).
- (2) If $W = \{n \in \mathbb{N} \mid n \equiv 1 \pmod{2}\}$ and p = 3, then X(n) = A(n) and Y(n) = C(n).

As a consequence of all the above, we obtain one-to-one correspondences among A(n), B(n) and C(n) by using the theory of Gröbner bases.

For another example, let

$$P(n) = \{ \lambda \vdash n \mid \lambda_i \equiv \pm 1 \pmod{5} \},\$$

$$Q(n) = \{ \lambda \vdash n \mid \lambda_i - \lambda_{i+1} \ge 2 \}.$$

By Rogers-Ramanujan equality, it is known that the sets P(n) and Q(n) have the same cardinality for each $n \in \mathbb{N}$. If we can find an ideal I as in the following question, then we will obtain a one-to-one correspondence between P(n) and Q(n) by using division algorithm.

Question 3.3. Find an ideal I of S and a monomial order > on Mon(S) satisfying $S/I \cong k[\{x_i \mid i \equiv \pm 1 \pmod{5}\}]$ and $in(I) = (x_i^2, x_i x_{i+1} \mid i \in \mathbb{N})$.

References

- [1] D. EISENBUD, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics **150**, Springer Verlag (1995).
- [2] K. IIMA AND Y. YOSHINO, Gröbner bases for the polynomial rings with infinitely many variables and applications, in preparation (2008).

Department of Math., Okayama University, 700-8530, Okayama, Japan iima@math.okayama-u.ac.jp, yoshino@math.okayama-u.ac.jp