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1 Introduction

Recall that a sequence λ = (λ1, λ2, . . . , λr) of positive integers is called a
partition of a non-negative integer n if the equality λ1 + λ2 + · · · + λr = n
holds and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1. In such a case we denote it by λ ` n.

We are concerned with the following sets of partitions:

A(n) = { λ ` n | λi ≡ ±1 (mod 6) },
B(n) = { λ ` n | λi ≡ ±1 (mod 3), λ1 > λ2 > · · · > λr },
C(n) = { λ ` n | each λi is odd, and

any number appears in λi’s at most two times }.

It is known by famous Schur’s equalities that all these sets A(n), B(n) and
C(n) have the same cardinality for all n ∈ N. It is also known that the
one-to-one correspondences among these three sets are realized in some com-
binatorial way using 2-adic or 3-adic expansions of integers. In this article we
reconstruct such one-to-one correspondences by using the theory of Gröbner
bases. For this, we need to extend the theory of Gröbner bases to a polyno-
mial ring with infinitely many variables.

2 Gröbner bases

Throughout this article, let k be any field and let S = k[x1, x2, . . .] be a

polynomial ring with countably infinite variables. We denote by Z(∞)
≥0 the set

of all sequences a = (a1, a2, . . .) of integers where ai = 0 for all i but finite
number of integers. Also we denote by Mon(S) the set of all monomials



in S. Since any monomial is described uniquely as xa =
∏

i x
ai
i for some

a = (a1, a2, . . .) ∈ Z(∞)
≥0 , we can identify these sets:

Mon(S) ∼= Z(∞)
≥0 .

If we attach degree on S by deg xi = di, then a monomial xa has degree
deg xa =

∑∞
i=1 aidi. In the rest of the paper, we assume that the degrees di’s

are chosen in such a way that there are only a finite number of monomials of
degree d for each d ∈ N. For example, the simplest way of attaching degree
is that deg xi = i for all i ∈ N.

Definition 2.1. A total order > on Mon(S) is called a monomial or-
der if (Mon(S), >) is a well-ordered set, and it is compatible with the
multiplication of monomials, i.e. xa > xb implies xcxa > xcxb for all
xa, xb, xc ∈ Mon(S).

Note that the ordering x1 > x2 > x3 > · · · is not acceptable for monomial
order, since it violates the well-ordering condition. On the other hand, if we
are given any monomial order >, then, renumbering the variables, we may
assume that x1 < x2 < x3 < · · · .

The following are examples of monomial orders on Mon(S).

Example 2.2. Let a = (a1, a2, . . .) and b = (b1, b2, . . .) be elements in Z(∞)
≥0 .

(1) The pure lexicographic order >pl is defined in such a way that xa >pl xb

if and only if ai > bi for the last index i with ai 6= bi.

(2) The degree (resp. anti-) lexicographic order >dl (resp. >dal) is defined
in such a way that xa >dl xb (resp. xa >dal xb) if and only if either
deg xa > deg xb or deg xa = deg xb and ai > bi for the last (resp. first)
index i with ai 6= bi.

(3) The degree (resp. anti-) reverse lexicographic order >drl (resp. >darl)
is defined as follows: xa >drl xb (resp. xa >darl xb) if and only if either
deg xa > deg xb or deg xa = deg xb and ai < bi for the first (resp. last)
index i with ai 6= bi.

These monomial orders are all distinct as shown in the following example
in which deg xi = i for i ∈ N:

x4 >dl x1x3 >dl x2
2 >dl x2

1x2 >dl x4
1,

x4
1 >dal x2

1x2 >dal x1x3 >dal x2
2 >dal x4,

x4 >drl x2
2 >drl x1x3 >drl x2

1x2 >drl x4
1,

x4
1 >darl x2

1x2 >darl x2
2 >darl x1x3 >darl x4.



Now suppose that a monomial order > on Mon(S) is given and we fix it.
Then, any non-zero polynomial f ∈ S is expressed as

f = c1x
a(1) + c2x

a(2) + · · ·+ crx
a(r),

where ci 6= 0 ∈ k and xa(1) > xa(2) > . . . > xa(r). In such a case, the
leading term, the leading monomial and the leading coefficient of f are given
respectively as `t(f) = c1x

a(1), `m(f) = xa(1) and `c(f) = c1. For an ideal
I(6= (0)) ⊂ S, the initial ideal in(I) of I is defined to be the ideal generated
by all the leading terms `t(f) of non-zero polynomials f ∈ I. The Gröbner
base of I is defined similarly to the ordinary case.

Definition 2.3. A subset G of an ideal I is called a Gröbner base for I if
{`t(g) | g ∈ G} generates the initial ideal in(I).

Since S is not a Noetherian ring, one cannot expect that there always ex-
ists a finite Gröbner base G for a given ideal I. But any argument concerning
Gröbner bases for an ideal of S can be reduced to the ordinary case for the
polynomial rings with finite variables by the following theorem.

Theorem 2.4. Let I be an ideal of S. For a positive integer n, we set S〈n〉 =
k[x1, x2, . . . , xn] which is a polynomial subring of S and set I〈n〉 = I ∩ S〈n〉.
Now let G be a subset of I.

(1) Suppose that each G ∩ S〈n〉 is a Gröbner base for I〈n〉 for all n ∈ N,
then G is a Gröbner base for I.

(2) The converse holds when the monomial order is the pure lexicographic
order.

The following division algorithm is proved using Theorem 2.4.

Theorem 2.5 (Division algorithm). Let G be a subset of S. Then any
non-zero polynomial f ∈ S has an expression

f = f1g1 + f2g2 + · · ·+ fsgs + f ′,

with gi ∈ G and fi, f
′ ∈ S such that the following conditions hold:

(1) If we write f ′ =
∑t

i=1 cix
a(i) with ci 6= 0 ∈ k, then xa(i) /∈ {in(g) | g ∈

G}S for each i = 1, 2, . . . , t.

(2) If figi 6= 0, then `m(figi) ≤ `m(f).

Any such f ′ is called a remainder of f with respect to G. Note that a
remainder is in general not necessarily unique. But if G is a Gröbner base
for I = GS, then a remainder of f with respect to G is uniquely determined.



3 Applications

Let S = k[x1, x2, . . .] be a polynomial ring with countably infinite variables
as before. We regard S as a graded k-algebra by defining deg(xi) = i for
each i ∈ N, and denote by Sn the part of degree n of S for n ∈ N. Note that
there is a bijective mapping between the set of partitions of n and the set
of monomials of degree n. In fact, the correspondence is given by mapping
a partition λ = (λ1, λ2, . . . , λr) ` n to the monomial xλ = xλr · · · xλ2xλ1 of
degree n.

Let W be any subset of N satisfying pW ⊂ W for an integer p ≥ 2,
where pW = {pw | w ∈ W}. In this case, we consider a polynomial subring
R = k[xi | i ∈ W ] of S. We are interested in the following two subsets of
partitions of n:

X(n) = { λ ` n | λi ∈ W \ pW for each i },
Y (n) = { λ ` n | λi ∈ W for each i, and

any number appears among λi’s at most p− 1 times}.

Theorem 3.1. Under the circumstances above, consider the set of polyno-
mials G = {xp

i − xpi | i ∈ W} in R. We adopt the degree anti-reverse lexi-
cographic order on the set of monomials in R. Then G is a reduced Gröbner
base for the ideal GS.

Furthermore, define a mapping ϕ : X(n) → Y (n) so that xϕ(λ) is a re-
mainder of xλ with respect to G for any λ ∈ X(n). Then ϕ is a well-defined
bijective mapping.

In particular we have that |X(n)| = |Y (n)| in the case above. Therefore,
just considering the generating functions of |X(n)| and |Y (n)|, we see that
the following functional equality holds;

∏

m∈W\pW

1

1− tm
=

∏
m∈W

(1 + tm + t2m + · · ·+ t(p−1)m).

Example 3.2. Recall that A(n), B(n) and C(n) are the sets of partitions
given in Introduction.

(1) If W = {n ∈ N | n ≡ ±1 (mod 3)} and p = 2, then X(n) = A(n) and
Y (n) = B(n).

(2) If W = {n ∈ N | n ≡ 1 (mod 2)} and p = 3, then X(n) = A(n) and
Y (n) = C(n).



As a consequence of all the above, we obtain one-to-one correspondences
among A(n), B(n) and C(n) by using the theory of Gröbner bases.

For another example, let

P (n) = { λ ` n | λi ≡ ±1 (mod 5) },
Q(n) = { λ ` n | λi − λi+1 ≥ 2 }.

By Rogers-Ramanujan equality, it is known that the sets P (n) and Q(n)
have the same cardinality for each n ∈ N. If we can find an ideal I as in the
following question, then we will obtain a one-to-one correspondence between
P (n) and Q(n) by using division algorithm.

Question 3.3. Find an ideal I of S and a monomial order > on Mon(S)
satisfying S/I ∼= k[{xi | i ≡ ±1 (mod 5)}] and in(I) = (x2

i , xixi+1 | i ∈ N).
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