Gröbner bases for the polynomial ring with infinite variables and their applications

Kei-ichiro Iima and Yuji Yoshino
(Okayama University)

1 Introduction

Recall that a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ of positive integers is called a partition of a non-negative integer n if the equality $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{r}=n$ holds and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} \geq 1$. In such a case we denote it by $\lambda \vdash n$.

We are concerned with the following sets of partitions:

$$
\begin{aligned}
A(n)=\left\{\begin{array}{lll}
\lambda \vdash n & \lambda_{i} \equiv \pm 1 & (\bmod 6)
\end{array}\right\}, \\
B(n)=\left\{\begin{array}{lll}
\lambda \vdash n & \lambda_{i} \equiv \pm 1 & (\bmod 3), \quad \lambda_{1}>\lambda_{2}>\cdots>\lambda_{r}
\end{array}\right\}, \\
C(n)= \begin{cases}\lambda \vdash n & \mid \text { each } \lambda_{i} \text { is odd, and } \\
& \text { any number appears in } \left.\lambda_{i} \text { 's at most two times }\right\} .\end{cases}
\end{aligned}
$$

It is known by famous Schur's equalities that all these sets $A(n), B(n)$ and $C(n)$ have the same cardinality for all $n \in \mathbb{N}$. It is also known that the one-to-one correspondences among these three sets are realized in some combinatorial way using 2 -adic or 3 -adic expansions of integers. In this article we reconstruct such one-to-one correspondences by using the theory of Gröbner bases. For this, we need to extend the theory of Gröbner bases to a polynomial ring with infinitely many variables.

2 Gröbner bases

Throughout this article, let k be any field and let $S=k\left[x_{1}, x_{2}, \ldots\right]$ be a polynomial ring with countably infinite variables. We denote by $\mathbb{Z}_{\geq 0}^{(\infty)}$ the set of all sequences $a=\left(a_{1}, a_{2}, \ldots\right)$ of integers where $a_{i}=0$ for all i but finite number of integers. Also we denote by $\operatorname{Mon}(S)$ the set of all monomials
in S. Since any monomial is described uniquely as $x^{a}=\prod_{i} x_{i}^{a_{i}}$ for some $a=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{Z}_{\geq 0}^{(\infty)}$, we can identify these sets:

$$
\operatorname{Mon}(S) \cong \mathbb{Z}_{\geq 0}^{(\infty)}
$$

If we attach degree on S by $\operatorname{deg} x_{i}=d_{i}$, then a monomial x^{a} has degree $\operatorname{deg} x^{a}=\sum_{i=1}^{\infty} a_{i} d_{i}$. In the rest of the paper, we assume that the degrees d_{i} 's are chosen in such a way that there are only a finite number of monomials of degree d for each $d \in \mathbb{N}$. For example, the simplest way of attaching degree is that $\operatorname{deg} x_{i}=i$ for all $i \in \mathbb{N}$.

Definition 2.1. A total order $>$ on $\operatorname{Mon}(S)$ is called a monomial order if $(\operatorname{Mon}(S),>)$ is a well-ordered set, and it is compatible with the multiplication of monomials, i.e. $x^{a}>x^{b}$ implies $x^{c} x^{a}>x^{c} x^{b}$ for all $x^{a}, x^{b}, x^{c} \in \operatorname{Mon}(S)$.

Note that the ordering $x_{1}>x_{2}>x_{3}>\cdots$ is not acceptable for monomial order, since it violates the well-ordering condition. On the other hand, if we are given any monomial order $>$, then, renumbering the variables, we may assume that $x_{1}<x_{2}<x_{3}<\cdots$.

The following are examples of monomial orders on $\operatorname{Mon}(S)$.
Example 2.2. Let $a=\left(a_{1}, a_{2}, \ldots\right)$ and $b=\left(b_{1}, b_{2}, \ldots\right)$ be elements in $\mathbb{Z}_{\geq 0}^{(\infty)}$.
(1) The pure lexicographic order $>_{p l}$ is defined in such a way that $x^{a}>_{p l} x^{b}$ if and only if $a_{i}>b_{i}$ for the last index i with $a_{i} \neq b_{i}$.
(2) The degree (resp. anti-) lexicographic order $>_{d l}\left(\right.$ resp. $\left.>_{d a l}\right)$ is defined in such a way that $x^{a}>_{d l} x^{b}$ (resp. $x^{a}>_{d a l} x^{b}$) if and only if either $\operatorname{deg} x^{a}>\operatorname{deg} x^{b}$ or $\operatorname{deg} x^{a}=\operatorname{deg} x^{b}$ and $a_{i}>b_{i}$ for the last (resp. first) index i with $a_{i} \neq b_{i}$.
(3) The degree (resp. anti-) reverse lexicographic order $>_{d r l}\left(\right.$ resp. $\left.>_{\text {darl }}\right)$ is defined as follows: $x^{a}>_{d r l} x^{b}$ (resp. $x^{a}>_{\text {darl }} x^{b}$) if and only if either $\operatorname{deg} x^{a}>\operatorname{deg} x^{b}$ or $\operatorname{deg} x^{a}=\operatorname{deg} x^{b}$ and $a_{i}<b_{i}$ for the first (resp. last) index i with $a_{i} \neq b_{i}$.

These monomial orders are all distinct as shown in the following example in which $\operatorname{deg} x_{i}=i$ for $i \in \mathbb{N}$:

$$
\begin{array}{ccccccccc}
x_{4} & >_{d l} & x_{1} x_{3} & >_{d l} & x_{2}^{2} & >_{d l} & x_{1}^{2} x_{2} & >_{d l} & x_{1}^{4}, \\
x_{1}^{4} & >_{d a l} & x_{1}^{2} x_{2} & >_{d a l} & x_{1} x_{3} & >_{d a l} & x_{2}^{2} & >_{d a l} & x_{4}, \\
x_{4} & >_{d r l} & x_{2}^{2} & >_{d r l} & x_{1} x_{3} & >_{d r l} & x_{1}^{2} x_{2} & >_{d r l} & x_{1}^{4}, \\
x_{1}^{4} & >_{d a r l} & x_{1}^{2} x_{2} & >_{d a r l} & x_{2}^{2} & >_{d a r l} & x_{1} x_{3} & >_{d a r l} & x_{4} .
\end{array}
$$

Now suppose that a monomial order $>$ on $\operatorname{Mon}(S)$ is given and we fix it. Then, any non-zero polynomial $f \in S$ is expressed as

$$
f=c_{1} x^{a(1)}+c_{2} x^{a(2)}+\cdots+c_{r} x^{a(r)}
$$

where $c_{i} \neq 0 \in k$ and $x^{a(1)}>x^{a(2)}>\ldots>x^{a(r)}$. In such a case, the leading term, the leading monomial and the leading coefficient of f are given respectively as $\ell t(f)=c_{1} x^{a(1)}, \ell m(f)=x^{a(1)}$ and $\ell c(f)=c_{1}$. For an ideal $I(\neq(0)) \subset S$, the initial ideal $i n(I)$ of I is defined to be the ideal generated by all the leading terms $\ell t(f)$ of non-zero polynomials $f \in I$. The Gröbner base of I is defined similarly to the ordinary case.

Definition 2.3. A subset \mathcal{G} of an ideal I is called a Gröbner base for I if $\{\ell t(g) \mid g \in \mathcal{G}\}$ generates the initial ideal in (I).

Since S is not a Noetherian ring, one cannot expect that there always exists a finite Gröbner base \mathcal{G} for a given ideal I. But any argument concerning Gröbner bases for an ideal of S can be reduced to the ordinary case for the polynomial rings with finite variables by the following theorem.
Theorem 2.4. Let I be an ideal of S. For a positive integer n, we set $S^{\langle n\rangle}=$ $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which is a polynomial subring of S and set $I^{\langle n\rangle}=I \cap S^{\langle n\rangle}$. Now let \mathcal{G} be a subset of I.
(1) Suppose that each $\mathcal{G} \cap S^{\langle n\rangle}$ is a Gröbner base for $I^{\langle n\rangle}$ for all $n \in \mathbb{N}$, then \mathcal{G} is a Gröbner base for I.
(2) The converse holds when the monomial order is the pure lexicographic order.

The following division algorithm is proved using Theorem 2.4.
Theorem 2.5 (Division algorithm). Let \mathcal{G} be a subset of S. Then any non-zero polynomial $f \in S$ has an expression

$$
f=f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{s} g_{s}+f^{\prime}
$$

with $g_{i} \in \mathcal{G}$ and $f_{i}, f^{\prime} \in S$ such that the following conditions hold:
(1) If we write $f^{\prime}=\sum_{i=1}^{t} c_{i} x^{a(i)}$ with $c_{i} \neq 0 \in k$, then $x^{a(i)} \notin\{$ in $(g) \mid g \in$ $\mathcal{G}\} S$ for each $i=1,2, \ldots, t$.
(2) If $f_{i} g_{i} \neq 0$, then $\ell m\left(f_{i} g_{i}\right) \leq \ell m(f)$.

Any such f^{\prime} is called a remainder of f with respect to \mathcal{G}. Note that a remainder is in general not necessarily unique. But if \mathcal{G} is a Gröbner base for $I=\mathcal{G} S$, then a remainder of f with respect to \mathcal{G} is uniquely determined.

3 Applications

Let $S=k\left[x_{1}, x_{2}, \ldots\right]$ be a polynomial ring with countably infinite variables as before. We regard S as a graded k-algebra by defining $\operatorname{deg}\left(x_{i}\right)=i$ for each $i \in \mathbb{N}$, and denote by S_{n} the part of degree n of S for $n \in \mathbb{N}$. Note that there is a bijective mapping between the set of partitions of n and the set of monomials of degree n. In fact, the correspondence is given by mapping a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \vdash n$ to the monomial $x^{\lambda}=x_{\lambda_{r}} \cdots x_{\lambda_{2}} x_{\lambda_{1}}$ of degree n.

Let W be any subset of \mathbb{N} satisfying $p W \subset W$ for an integer $p \geq 2$, where $p W=\{p w \mid w \in W\}$. In this case, we consider a polynomial subring $R=k\left[x_{i} \mid i \in W\right]$ of S. We are interested in the following two subsets of partitions of n :

$$
\begin{aligned}
& X(n)=\left\{\lambda \vdash n \quad \mid \quad \lambda_{i} \in W \backslash p W \text { for each } i\right\}, \\
& Y(n)=\left\{\lambda \vdash n \quad \mid \quad \lambda_{i} \in W \text { for each } i\right. \text {, and } \\
& \text { any number appears among } \left.\lambda_{i} \text { 's at most } p-1 \text { times }\right\} \text {. }
\end{aligned}
$$

Theorem 3.1. Under the circumstances above, consider the set of polynomials $\mathcal{G}=\left\{x_{i}^{p}-x_{p i} \mid i \in W\right\}$ in R. We adopt the degree anti-reverse lexicographic order on the set of monomials in R. Then \mathcal{G} is a reduced Gröbner base for the ideal $\mathcal{G} S$.

Furthermore, define a mapping $\varphi: X(n) \rightarrow Y(n)$ so that $x^{\varphi(\lambda)}$ is a remainder of x^{λ} with respect to \mathcal{G} for any $\lambda \in X(n)$. Then φ is a well-defined bijective mapping.

In particular we have that $|X(n)|=|Y(n)|$ in the case above. Therefore, just considering the generating functions of $|X(n)|$ and $|Y(n)|$, we see that the following functional equality holds;

$$
\prod_{m \in W \backslash p W} \frac{1}{1-t^{m}}=\prod_{m \in W}\left(1+t^{m}+t^{2 m}+\cdots+t^{(p-1) m}\right) .
$$

Example 3.2. Recall that $A(n), B(n)$ and $C(n)$ are the sets of partitions given in Introduction.
(1) If $W=\{n \in \mathbb{N} \mid n \equiv \pm 1(\bmod 3)\}$ and $p=2$, then $X(n)=A(n)$ and $Y(n)=B(n)$.
(2) If $W=\{n \in \mathbb{N} \mid n \equiv 1(\bmod 2)\}$ and $p=3$, then $X(n)=A(n)$ and $Y(n)=C(n)$.

As a consequence of all the above, we obtain one-to-one correspondences among $A(n), B(n)$ and $C(n)$ by using the theory of Gröbner bases.

For another example, let

$$
\left.\left.\begin{array}{l}
P(n)=\left\{\lambda \vdash n \quad \left\lvert\, \begin{array}{ll}
\lambda_{i} \equiv \pm 1 \quad(\bmod 5)
\end{array}\right.\right\}, \\
Q(n)=\{\lambda \vdash n
\end{array} \right\rvert\, \lambda_{i}-\lambda_{i+1} \geq 2\right\} . \quad .
$$

By Rogers-Ramanujan equality, it is known that the sets $P(n)$ and $Q(n)$ have the same cardinality for each $n \in \mathbb{N}$. If we can find an ideal I as in the following question, then we will obtain a one-to-one correspondence between $P(n)$ and $Q(n)$ by using division algorithm.

Question 3.3. Find an ideal I of S and a monomial order $>$ on $\operatorname{Mon}(S)$ satisfying $S / I \cong k\left[\left\{x_{i} \mid i \equiv \pm 1(\bmod 5)\right\}\right]$ and $\operatorname{in}(I)=\left(x_{i}^{2}, x_{i} x_{i+1} \mid i \in \mathbb{N}\right)$.

References

[1] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer Verlag (1995).
[2] K. Iima and Y. Yoshino, Gröbner bases for the polynomial rings with infinitely many variables and applications, in preparation (2008).

Department of Math., Okayama University, 700-8530, Okayama, Japan iima@math.okayama-u.ac.jp, yoshino@math.okayama-u.ac.jp

