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Abstract

In 2003, Shestakov-Umirbaev solved Nagata’s conjecture on an au-
tomorphism of a polynomial ring. In the present paper, we reconstruct
their theory by using the “generalized Shestakov-Umirbaev inequal-
ity”, which was recently given by the author. As a consequence, we ob-
tain a more precise tameness criterion for polynomial automorphisms.
In particular, we show that no tame automorphism of a polynomial
ring admits a reduction of type IV.

1 Introduction

Let k be a field, n a natural number, and k[x] = k[x1, . . . , xn] the polynomial

ring in n variables over k. In the present paper, we discuss the structure

of the automorphism group Autk k[x] of k[x] over k. Let F : k[x] → k[x]

be an endomorphism over k. We identify F with the n-tuple (f1, . . . , fn) of

elements of k[x], where fi = F (xi) for each i. Then, F is an automorphism if

and only if the k-algebra k[x] is generated by f1, . . . , fn. Note that the sum

deg F :=
∑n

i=1 deg fi of the total degrees of f1, . . . , fn is at least n whenever

F is an automorphism. An automorphism F is said to be affine if deg F = n.

If this is the case, then there exist (ai,j)i,j ∈ GLn(k) and (bi)i ∈ kn such that

fi =
∑n

j=1 ai,jxj + bi for each i. We say that F is elementary if there exist
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l ∈ {1, . . . , n} and φ ∈ k[x1, . . . , xl−1, xl+1, . . . , xn] such that fl = xl + φ and

fi = xi for each i 6= l. The subgroup Tk k[x] of Autk k[x] generated by affine

automorphisms and elementary automorphisms is called the tame subgroup.

An automorphism is said to be tame if it belongs to Tk k[x].

It is a fundamental question in polynomial ring theory whether Tk k[x] =

Autk k[x] holds for each n, which is called the tame generators problem. The

equality is obvious if n = 1. This also holds true if n = 2. It was shown

by Jung [4] in 1942 when k is of characteristic zero, and by van der Kulk [5]

in 1953 when k is an arbitrary field. These results are consequences of the

fact that each automorphism of k[x] but an affine automorphism admits an

elementary reduction if n = 2. Here, we say that F admits an elementary

reduction if deg(F ◦ E) < deg F for some elementary automorphism E, that

is, there exist l ∈ {1, . . . , n} and φ ∈ k[f1, . . . , fl−1, fl+1, . . . , fn] such that

deg(fl − φ) < deg fl. By the Jung-van der Kulk theorem, in case n = 2, we

may find elementary automorphisms E1, . . . , Er for some r ∈ N such that

deg F > deg(F ◦ E1) > · · · > deg(F ◦ E1 ◦ · · · ◦ Er) = 2

for each F ∈ Autk k[x] with deg F > 2. This implies that F is tame.

When n = 3, the structure of Autk k[x] becomes far more difficult. In

1972, Nagata [9] conjectured that the automorphism

F = (x1 − 2(x1x3 + x2
2)x2 − (x1x3 + x2

2)
2x3, x2 + (x1x3 + x2

2)x3, x3) (1.1)

is not tame. This famous conjecture was finally solved in the affirmative by

Shestakov-Umirbaev [11] in 2003 for a field k of characteristic zero. There-

fore, Tk k[x] 6= Autk k[x] if n = 3. However, the question remains open for

n ≥ 4.

Shestakov-Umirbaev [11] showed that, if F does not admit an elementary

reduction for F ∈ Tk k[x] with deg F > 3, then there exists a sequence

of elementary automorphisms E1, . . . , Er, where r ∈ {2, 3, 4}, with certain

conditions such that deg(F ◦ E1 ◦ · · · ◦ Er) < deg F . If this is the case,

then F is said to admit a reduction of type I, II, III or IV according to

the conditions on F and E1, . . . , Er. Nagata’s automorphism is not affine,

and does not admit neither an elementary reduction nor reductions of these

four types. Therefore, Nagata’s automorphism is not tame. We note that



there exist tame automorphisms which admit reductions of type I (see [1], [7]

and [11]), but it is not known whether there exist automorphisms admitting

reductions of the other types.

Shestakov-Umirbaev [11] used an inequality [10, Theorem 3] concerning

the total degrees of polynomials as a crucial tool. This result was recently

generalized by the author in [6]. The purpose of this paper is to recon-

struct the Shestakov-Umirbaev theory using the generalized inequality. As

a consequence, we obtain a more precise tameness criterion for polynomial

automorphisms. In particular, we show that no tame automorphism of k[x]

admits a reduction of type IV.

This report consists of the first two sections of [8], which is available at

http://arxiv.org/PS_cache/arxiv/pdf/0801/0801.0117v1.pdf

Although the full version of [8] is 48 pages long, the details are carefully

explained. It is said that the theory of Shestakov and Umirbaev is difficult

and still not widely understood. I hope that our article will be helpful in

understanding how the tame generators problem was solved.

2 Main result

In what follows, we assume that the field k is of characteristic zero. Let Γ

be a totally ordered Z-module, and ω = (ω1, . . . , ωn) an n-tuple of elements

of Γ with ωi > 0 for i = 1, . . . , n. We define the ω-weighted grading k[x] =⊕
γ∈Γ k[x]γ by setting k[x]γ to be the k-vector subspace generated by the

monomials xa1
1 · · · xan

n of k[x] with
∑n

i=1 aiωi = γ for each γ ∈ Γ. For f ∈
k[x] \ {0}, we define the ω-weighted degree degω f of f to be the maximum

among γ ∈ Γ with fγ 6= 0, where fγ ∈ k[x]γ for each γ such that f =
∑

γ∈Γ fγ.

We define fω = fδ, where δ = degω f . In case f = 0, we set degω f = −∞,

i.e., a symbol which is less than any element of Γ. For example, if Γ = Z

and ωi = 1 for i = 1, . . . , n, then the ω-weighted degree is the same as the

total degree. For each k-vector subspace V of k[x], we define V ω to be the k-

vector subspace of k[x] generated by {fω | f ∈ V \{0}}. For each l-tuple F =

(f1, . . . , fl) of elements of k[x] for l ∈ N, we define degω F =
∑l

i=1 degω fi.



For each σ ∈ Sl, we define Fσ = (fσ(1), . . . , fσ(l)), where Sl is the symmetric

group of {1, . . . , l} for each l ∈ N.

The degree of a differential form defined in [6] is important in our theory.

Let Ωk[x]/k be the module of differentials of k[x] over k, and
∧l Ωk[x]/k the l-th

exterior power of the k[x]-module Ωk[x]/k for l ∈ N. Then, we may uniquely

express each θ ∈
∧l Ωk[x]/k as

θ =
∑

1≤i1<···<il≤n

fi1,...,ildxi1 ∧ · · · ∧ dxil ,

where fi1,...,il ∈ k[x] for each i1, . . . , il. Here, df denotes the differential of f

for each f ∈ k[x]. We define

degω θ = max{degω(fi1,...,ilxi1 · · · xil) | 1 ≤ i1 < · · · < il ≤ n}.

If θ 6= 0, then it follows that

degω θ ≥ min{ωi1 + · · · + ωil | 1 ≤ i1 < · · · < il ≤ n} > 0. (2.1)

We remark that f1, . . . , fl are algebraically independent over k if and only if

df1 ∧ · · · ∧ dfl 6= 0 for f1, . . . , fl ∈ k[x]. Actually, this condition is equivalent

to the condition that the rank of the l by n matrix ((fi)xj
)i,j is equal to l

(cf. [3, Proposition 1.2.9]). Here, fxi
denotes the partial derivative of f in xi

for each f ∈ k[x] and i ∈ {1, . . . , n}. By definition, it follows that

l∑
i=1

degω dfi ≥ degω(df1 ∧ · · · ∧ dfl). (2.2)

In (2.2), the equality holds if and only if fω
1 , . . . , fω

l are algebraically inde-

pendent over k. Actually, we may write df1 ∧ · · · ∧ dfl = dfω
1 ∧ · · · ∧ dfω

l + η,

where η ∈
∧l Ωk[x]/k with degω η <

∑l
i=1 degω fi. For each f ∈ k[x] \ k, we

have

degω df = max{degω(fxi
xi) | i = 1, . . . , n} = degω f, (2.3)

since df =
∑n

i=1 fxi
dxi. If f1, . . . , fn ∈ k[x] are algebraically independent

over k, then

n∑
i=1

degω fi =
n∑

i=1

degω dfi ≥ degω(df1 ∧ · · · ∧ dfn) ≥
n∑

i=1

ωi =: |ω| (2.4)



by (2.1), (2.3) and (2.4). As will be shown in Lemma 6.1(i), if degω F = |ω|
for F ∈ Autk k[x], then F is tame.

Now, consider the set T of triples F = (f1, f2, f3) of elements of k[x]

such that f1, f2 and f3 are algebraically independent over k. We identify

each F ∈ T with the injective homomorphism F : k[y] → k[x] defined by

F (yi) = fi for i = 1, 2, 3, where k[y] = k[y1, y2, y3] is the polynomial ring in

three variables over k. Let Ei denote the set of elementary automorphisms E

of k[y] such that E(yj) = yj for each j 6= i for i ∈ {1, 2, 3}, and E =
∪3

i=1 Ei.

We say that F = (f1, f2, f3) admits an elementary reduction for the weight

ω if degω(F ◦ E) < degω F for some E ∈ E , and call F ◦ E an elementary

reduction of F for the weight ω.

Let F = (f1, f2, f3) and G = (g1, g2, g3) be elements of T . We say that

the pair (F,G) satisfies the Shestakov-Umirbaev condition for the weight ω

if the following conditions hold:

(SU1) g1 = f1 + af 2
3 + cf3 and g2 = f2 + bf3 for some a, b, c ∈ k, and

g3 − f3 belongs to k[g1, g2];

(SU2) degω f1 ≤ degω g1 and degω f2 = degω g2;

(SU3) (gω
1 )2 ≈ (gω

2 )s for some odd number s ≥ 3;

(SU4) degω f3 ≤ degω g1, and fω
3 does not belong to k[gω

1 , gω
2 ];

(SU5) degω g3 < degω f3;

(SU6) degω g3 < degω g1 − degω g2 + degω(dg1 ∧ dg2).

Here, h1 ≈ h2 (resp. h1 6≈ h2) denotes that h1 and h2 are linearly de-

pendent (resp. linearly independent) over k for each h1, h2 ∈ k[x] \ {0}. We

say that F ∈ T admits a Shestakov-Umirbaev reduction for the weight ω if

there exist G ∈ T and σ ∈ S3 such that (Fσ, Gσ) satisfies the Shestakov-

Umirbaev condition, and call this G a Shestakov-Umirbaev reduction of F for

the weight ω. As will be shown in Theorem 4.1(P6), degω G < degω F if G

is a Shestakov-Umirbaev reduction of F .

Note that (SU1) implies that there exist Ei ∈ Ei for i = 1, 2, 3 such that

F ◦ E1 = (f1, g2, f3), F ◦ E1 ◦ E2 = (g1, g2, f3) and F ◦ E1 ◦ E2 ◦ E3 = G.

Furthermore, δ := (1/2) degω g2 belongs to Γ by (SU3).

Here is our main result.



Theorem 2.1 Assume that n = 3, and ω = (ω1, ω2, ω3) is an element of

Γ3 such that ωi > 0 for each i. Then, each F ∈ Tk k[x] with degω F > |ω|
admits an elementary reduction or a Shestakov-Umirbaev reduction for the

weight ω.

Note that F admits an elementary reduction for the weight ω if and

only if fω
i belongs to k[fj, fl]

ω for some i ∈ {1, 2, 3}, where j, l ∈ N \ {i}
with 1 ≤ j < l ≤ 3. In case degω f1, degω f2 and degω f3 are pairwise linearly

independent, this condition is equivalent to the condition that degω fi belongs

to the subsemigroup of Γ generated by degω fj and degω fl for some i ∈
{1, 2, 3}. Indeed, for each φ ∈ k[fj, fl] \ {0}, there exist p, q ∈ Z≥0 such that

degω φ = degω fp
j f q

l , since φ is a linear combination of fp
j f q

l for (p, q) ∈ (Z≥0)
2

over k, in which degω fp
j f q

l 6= degω fp′

j f q′

l whenever (p, q) 6= (p′, q′). Here, Z≥0

denotes the set of nonnegative integers.

Using Theorem 2.1, we can verify that Nagata’s automorphism is not

tame. Let Γ = Z3 equipped with the lexicographic order, i.e., a ≤ b if the first

nonzero component of b − a is positive for a, b ∈ Z3, and let ω = (e1, e2, e3),

where ei is the i-th standard unit vector of R3 for each i. Then, we have

degω f1 = (2, 0, 3), degω f2 = (1, 0, 2), degω f3 = (0, 0, 1).

Hence, degω F = (3, 0, 6) > (1, 1, 1) = |ω|. On the other hand, the three

vectors above are pairwise linearly independent, while any one of them is

not contained in the subsemigroup of Z3 generated by the other two vectors.

Hence, F does not admit an elementary reduction for the weight ω. Since

(1/2) degω fi does not belong to Γ = Z3 for each i ∈ {1, 2, 3}, we know that

F does not admit a Shestakov-Umirbaev reduction for the weight ω.

Therefore, we have the following corollary to Theorem 2.1.

Corollary 2.2 Nagata’s automorphism is not tame.

We may also check that Nagata’s automorphism does not admit a Shestakov-

Umirbaev reduction in a different way as follows. By Theorem 4.1(P7), we

know that 0 < δ < degω fi ≤ sδ holds each i ∈ {1, 2, 3} if F admits a

Shestakov-Umirbaev reduction for the weight ω. Hence, s degω fi > degω fj



for each i, j ∈ {1, 2, 3}. On the other hand, in the case of Nagata’s auto-

morphism, l degω f3 = (0, 0, l) is less than degω fi for i = 1, 2 for any l ∈ N

by the definition of the lexicographic order. Therefore, F does not admit a

Shestakov-Umirbaev reduction for the weight ω.

We define the rank of ω as the rank of the Z-submodule of Γ generated

by ω1, . . . , ωn. If ω has maximal rank n, then the k-vector space k[x]γ is of

dimension at most one for each γ. Consequently, it follows that degω f =

degω g if and only if fω ≈ gω for each f, g ∈ k[x] \ {0}. In such a case,

the assertion of Theorem 2.1 can be proved more easily than the general

case. Actually, we may omit a few lemmas and propositions needed to prove

Theorem 2.1. We note that ω = (e1, e2, e3) has maximal rank three, and so

it suffices to show the assertion of Theorem 2.1 in this special case to verify

that Nagata’s automorphism is not tame.
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