An algorithm for computing generators of \mathbb{G}_{a}-invariant rings

Ryuji Tanimoto

1. Introduction

Let k be an infinite field of arbitrary characteristic $p \geq 0$ and let \mathbb{G}_{a} be its additive group. For a \mathbb{G}_{a}-action on an affine variety $\operatorname{Spec} A$, we have the corresponding k-algebra homomorphism $\varphi: A \rightarrow A \otimes_{k} k[t]$, where t is an indeterminate over the field k. Write

$$
\varphi(f)=\sum_{n \geq 0} D_{n}(f) t^{n}
$$

where $D_{n}(f) \in A$ for all $n \geq 0$. Clearly, each D_{n} is a k-linear endomorphism of A and the set $\left\{D_{n}\right\}_{n \geq 0}$ satisfies the following conditions (1), (2), (3) and (4):
(1) D_{0} is the identity map of A;
(2) $D_{n}(a b)=\sum_{i+j=n} D_{i}(a) D_{j}(b)$ for all $n \geq 0$ and for all $a, b \in A$;
(3) For all $a \in A$, there exists $n \geq 0$ such that $D_{m}(a)=0$ for all $m \geq n$;
(4) $D_{i} \circ D_{j}=\binom{i+j}{i} D_{i+j}$ for all $i, j \geq 0$.

Let \mathbb{G}_{a} act on A by

$$
t \cdot f=\sum_{n \geq 0} D_{n}(f) t^{n}
$$

for all $t \in k$ and $f \in A$. Denote by $A^{\mathbb{G}_{a}}$ the invariant ring for the \mathbb{G}_{a}-action on A. So, we have the equality

$$
A^{\mathbb{G}_{a}}=\left\{a \in A \mid D_{n}(a)=0 \text { for all } n \geq 1\right\} .
$$

An element σ of A is said to be a local slice of the \mathbb{G}_{a}-action on A if σ satisfies the following conditions (1) and (2):
(1) $\sigma \notin A^{\mathbb{G}_{a}}$;
(2) $\operatorname{deg}_{t}(t \cdot \sigma)=\min \left\{\operatorname{deg}_{t}(t \cdot f) \mid f \in A \backslash A^{\mathbb{G}_{a}}\right\}$.

An element s of A is said to be a slice of the \mathbb{G}_{a}-action if s is a local slice of the \mathbb{G}_{a}-action and the leading coefficient of $t \cdot s \in A[t]$ is 1 .

In this report, we solve the following problem:
Problem. Assume that the finitely generated k-algebra A is a domain and the $\mathbb{G}_{a^{-}}$ action on A has a slice s. Give an algorithm for computing generators of the $\mathbb{G}_{a^{-}}$ invariant ring $A^{\mathbb{G}_{a}}$.

2. Dixmier operator and answer

We know from Miyanishi's theorem [2, 1.5.] that

$$
A=A^{\mathbb{G}_{a}}[s]
$$

and s can be considered as an indeterminate over $A^{\mathbb{G}_{a}}$. So, we have a natural surjective k-algebra homomorphism $\varepsilon_{s}: A \rightarrow A^{\mathbb{G}_{a}}$ by substituting 0 for s. We call this surjection the Dixmier operator.

The following theorem gives another description of the Dixmier operator. Let $P_{s}(t):=t \cdot s \in A[t]$.

Theorem. For any $f \in A$, express $t \cdot f$ as

$$
t \cdot f=P_{s}(t) \cdot Q_{f}(t)+R_{f}(t)
$$

where $Q_{f}(t), R_{f}(t) \in A[t]$ and $\operatorname{deg}_{t}\left(R_{f}(t)\right)<\operatorname{deg}_{t}\left(P_{s}(t)\right)$. Then $R_{f}(0) \in A^{\mathbb{G}_{a}}$ and $\varepsilon_{s}(f)=R_{f}(0)$.

Now, we give an answer to the Problem. Let $A=k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$. Calculate $\varepsilon_{s}\left(\alpha_{i}\right)$ for all $1 \leq i \leq n$ by using the above Theorem. Thus we have an answer.

3. Proof of the Theorem

Let $D:=\left\{D_{n}\right\}_{n \geq 0}$. We denote $t \cdot f$ by $\varphi_{D, t}(f)$, where $t \in \mathbb{G}_{a}$ and $f \in A$. We define the D-degree of $f \in A$ by $\operatorname{deg}_{D}(f):=\operatorname{deg}_{t}\left(\varphi_{D, t}(f)\right)$. By substituting $t+t^{\prime}$ for t of the equality $\varphi_{D, t}(f)=\varphi_{D, t}(s) \cdot Q_{f}(t)+R_{f}(t)$, we have

$$
\varphi_{D, t+t^{\prime}}(f)=\varphi_{D, t+t^{\prime}}(s) \cdot Q_{f}\left(t+t^{\prime}\right)+R_{f}\left(t+t^{\prime}\right)
$$

The left hand side $\varphi_{D, t+t^{\prime}}(f)$ can be written as

$$
\begin{aligned}
\varphi_{D, t+t^{\prime}}(f) & =\left(\varphi_{D, t} \circ \varphi_{D, t^{\prime}}\right)(f) \\
& =\varphi_{D, t}\left(\varphi_{D, t^{\prime}}(s) \cdot Q_{f}\left(t^{\prime}\right)+R_{f}\left(t^{\prime}\right)\right) \\
& =\varphi_{D, t+t^{\prime}}(s) \cdot \varphi_{D, t}\left(Q_{f}\left(t^{\prime}\right)\right)+\varphi_{D, t}\left(R_{f}\left(t^{\prime}\right)\right) .
\end{aligned}
$$

Thus we have

$$
\varphi_{D, t+t^{\prime}}(s) \cdot\left(Q_{f}\left(t+t^{\prime}\right)-\varphi_{D, t}\left(Q_{f}\left(t^{\prime}\right)\right)\right)=\varphi_{D, t}\left(R_{f}\left(t^{\prime}\right)\right)-R_{f}\left(t+t^{\prime}\right) .
$$

Let $d:=\operatorname{deg}_{t^{\prime}}\left(\varphi_{D, t^{\prime}}(s)\right)$. If $Q_{f}\left(t+t^{\prime}\right)-\varphi_{D, t}\left(Q_{f}\left(t^{\prime}\right)\right) \neq 0$, the left hand side is of degree $\geq d$ in t^{\prime} (note that $\varphi_{D, t+t^{\prime}}(s)$ is a monic polynomial of degree d in t^{\prime} over $A[t]$). On the other hand, the right hand side is of degree $<d$ in t^{\prime}. Hence, we know

$$
Q_{f}\left(t+t^{\prime}\right)=\varphi_{D, t}\left(Q_{f}\left(t^{\prime}\right)\right) \quad \text { and } \quad \varphi_{D, t}\left(R_{f}\left(t^{\prime}\right)\right)=R_{f}\left(t+t^{\prime}\right)
$$

Substituting 0 for t^{\prime} in the above two equalities, we have

$$
Q_{f}(t)=\varphi_{D, t}\left(Q_{f}(0)\right) \quad \text { and } \quad \varphi_{D, t}\left(R_{f}(0)\right)=R_{f}(t)
$$

We know from the latter of the above two equalities that $\operatorname{deg}_{D}\left(R_{f}(0)\right)<\operatorname{deg}_{D}(s)$. Since s is a slice of the \mathbb{G}_{a}-action, we have $R_{f}(0) \in A^{\mathbb{G}_{a}}$. Evaluating the equality

$$
\varphi_{D, t}(f)=\varphi_{D, t}(s) \cdot Q_{f}(t)+R_{f}(t)
$$

at $t=0$, we have the equality

$$
f=s \cdot Q_{f}(0)+R_{f}(0)
$$

in A. Evaluating this equality at $s=0$, we have $\varepsilon_{s}(f)=R_{f}(0)$. This completes the proof of the Theorem.

4. Dixmier operator in characteristic 0

In the following, assume that the characteristic of k is zero. The Dixmier operator $\varepsilon_{s}: A \rightarrow A^{\mathbb{G}_{a}}$ has the following simple form. This means that ε_{s} coincides with φ_{-s} defined in [1, Page 26].
Corollary. The Dixmier operator ε_{s} can be written as

$$
\varepsilon_{s}(f)=\sum_{n \geq 0} \frac{D_{1}^{n}(f)}{n!}(-s)^{n} \quad \text { for all } f \in A
$$

Proof. Since k is a field of characteristic zero, we have

$$
\varphi_{D, t}(f)=\sum_{n \geq 0} \frac{D_{1}^{n}(f)}{n!} t^{n} \quad \text { for all } f \in A
$$

and $\varphi_{D, t}(s)=s+t$. Express $\varphi_{D, t}(f)$ as

$$
\varphi_{D, t}(f)=(t+s) \cdot Q_{f}(t)+R_{f}
$$

where $R_{f} \in A$. By substituting $-s$ for t of the above equality, we have

$$
\sum_{n \geq 0} \frac{D_{1}^{n}(f)}{n!}(-s)^{n}=R_{f}
$$

We know from the above Theorem that $\varepsilon_{s}(f)=R_{f}$. Hence, we have the desired expression of ε_{s}.
Q.E.D.

References

[1] A. Van den Essen, Polynomial automorphisms and the Jacobian conjecture, Birkhäuser, Progress in Mathematics, Vol. 190, 2000.
[2] M. Miyanishi, Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[3] R. Tanimoto, An algorithm for computing the kernel of a locally finite iterative higher derivation, to appear in Journal of Pure and Applied Algebra.

