CLASSIFICATION OF 2-DIMENSIONAL GRADED NORMAL
HYPERSURFACES WITH «(R) = 1.
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INTRODUCTION

Inspired by the talk of Kyoji Saito at the Toyama Conference, Aug. 2007, I tried
the classification of 2-dimensional graded normal hypersurfaces with a(R) = 1 using
Demazure’s construction of normal graded rings. Since the classificaion is so simple
and nearly automatic, I want to introduce it.

Although this classification is “known” in the literature (cf. [S], [P1]), it seems
that the systematic method of classification is not known. So, I think this is worth-
while to be published in some form.

Also, I present here the classification of normal two-dimensional hypersurfaces
with a(R) = 2 and normal graded complete intersections with a(R) = 1 and
Proj (R) = P

1. PRELIMINARIES

Let R = k[u,v,w]/(f) be a 2-dimensional graded normal hypersurface, where k
is an algebraically closed field of any characteristic. We put X = Proj (R). Since
dimR = 2 and R is normal, X is a smooth curve. Then by the construction of
Zariski and Demazure ([1], [5]), there is an ample Q-Cartier divisor D (that is, ND
is an ample divisor on X for some positive integer V), such that

R = R(X,D) = ®,50H"(X,0x(nD)).T" C k(X)[T],
where 7' is a variable over k(X) and
H°(X,0x(nD)) ={f € k(X) | divx(f) +nD >0} U{0}.

Now, let us begin the classification. In the following, X is a smooth curve of genus
g and D is a fractional divisor on X such that ND is an ample integral (Cartier)
divisor for some N > 0.

We denote

D=Dy+ Y PP (%, (pa)=1),
i=1

where Dy is an integral divisor; a divisor with integer coefficients. In this case, we

denote .
g —1
D' = P;.

At the same time, by our assumption R = klu,v,w]/(f). If deg(u,v,w;f) =
(a.b. ), then by [2].

a(R)=h—(a+b+c).



We always assume deg(u, v, w; f) = (a,b, ¢; h) and also that a < b < c.

Proposition 1.1. (Fundamental formulas) Assume that R = R(X, D)
= klu,v,w]/(f) with deg(u,v,w; f) = (a,b,¢;h) and a(R) = h—(a+b+c¢) = 1.
Then we have the following equalities.

(1) [W] Since R is Gorenstein with a(R) =1, we have

g —1

i

DrEx+D =Ky+Y % 2p,

i=1
where, in general, D1 ~ Dy means that Dy — Dy = divx(f) for some f € k(X).
(2) [Tomari’s formula] If P(R,t) =" -, dimR,t",
lim(1 — t)>P(R,t) = degD.

_ 1—t
(3) Since P(R,t) = =m0 — M —5) we have

h 1 1 1 1
degD—%—@'}‘%‘l—E'}‘E.

Note that the latter expression is a decreasing function of a,b, c.

2. THE CLASSIFICATION OF THE HYPERSURFACES WITH a(R) = 1.

g —1

Henceforce, we put D = Kx + Y., P;. We always use the letter r in

this meaning. From 1.1 (3), the maximal value of degD is taken when a = b =
c =1 and degD = 4 in that case.

Case A. The case g > 0.

Assume that g > 1. Since deg(D) < 4, and degD > degKx = 29 — 2, g < 3 and
if g =3, D = Kx. We list the cases by giving the form of D and (a, b, c; h). We can
easily deduce the general form of the equation f from this data. Also, if f with the
given weight has an isolated singularity, then kfu,v,w]/(f) = R(X, D), where D is
a divisor of given form.

(A-1) ¢g=3,D=Kyx; (1,1,1;4).

Next, consider the case g = 2. Note that dimR; = dimH"(Kx) = g = 2, we have

3 )
a=>b=1and degD =1+ - < 5 (¢ > 2). Since, either degD = 2, D = Kx or
c

5
degD > 57 We have 2 cases.

(A-2) ¢g=2,D=Ky; (1,1,3;6).
1
(A-3) g:2,D:KX+§P; (1,1,2;5).



Next, assume g = 1. In this case, a = 1, 2 < b < ¢ and the maximal value

3
of degD is —. Since on the other hand, degD > g and thus r < 3 and if r = 3,

1
D:§(P1+P2+P3)

1

(SR

Also, since dimRy = r, if r =2, then a = 1,b = 2,¢ > 3, deg(D) <

1
(A'5) gzlaDzi(P1+P2>a (17274a8)
1 2

—1
Ifg=1and D = q—P, we have ¢ — 1 new generators in degrees 1,3,...,q.

Hence ¢ < 4.
8
a=1,3<b,cand degD < 9

(A-7) g=1,D= %P; (1,4,6:12).
(A-8) g=1,D= %P; (1,3,5:10).
(A-9) g¢g=1,D= ZP; (1,3,4;9).
We have 9 types when g > 1.

Case B. The case ¢ =0 and r > 4.

In the following, we always assume g = 0. Since deg(Kx) = —2 and degD >
0, we have r > 3. On the other hand, since R, = H’(Kx) = 0, a > 2 and

7
degD < 3 < 1. Since degD > —2 + /2, we have r < 5.

In this subsection, we treat the cases where r = 4, 5.

Now, since deg[2D] = r — 4, dimRy = 2, 1, respectively, if r = 5, 4.
2 1 2
Thus if r =5, then a = b= 2 and ¢ > 3. Hence degD < 3 Since 3.5 +2.§ —2=

2
6 > 3 the only possible cases for (qi,...,qs5) are (2,2,2,2,2) and (2,2,2,2,3).

ot

1
(B-]_) D:Kx+§(P1+P2++P5), (2,2,5,10)

1 2



Henceforce we assume r = 4 and express D by (q1,42,¢3,qs) and we always

1
assume q; < ¢ < q3 < q4. In this case, a = 2 and 3 < b < ¢. Hence degD < 3

2 1
Since 4.5 —2> 3 q1 =2 and g4 > 3.
Let s be the number of ¢; > 2 (1 < s < 3). Then since deg[3D] = —6 + 8 — s,
dimR3 = 0,1,2 when s = 1, 2, 3, respectively.
If s =3, dimRy + dimR3 = 3 and we must have (a,b,c;h) = (2,3,3;9).

1 2
(B-3) D:Kx+§P1+§(P2+P3+P4), (2,3,3,9)

5 .
< Also, since

+ S 1o

=
S

If s =2 a=20b=3and ¢c > 4 and degD =
11 2 3

)
_2+(§+§+§+4:E,Wehavthypes.

1 2
(B-4) D:Kx+—(P1+P2)+§(P3+P4); (2,3,6,12)

2
1 2 3
(B-5) D=Kx+ 5(P1 + P) + ng + ZP4; (2,3,4;10).

Now we trat the case (2,2,2,¢), ¢ > 3. In this case, R3 = 0 and dimR,; = 1 or 2
according to ¢ = 3 or ¢ > 4. In the latter case, dimR5 = 0 or 1 according to ¢ = 4
or ¢ > 5. Hence, if ¢ > 5, we have already 3 generators of R.

1 4

(B-6) D:KX+§(P1+P2+P3)+5P4; (2,4,5;12).
1 3

(B-7) D:KX+§(P1+P2+P3)+1P4; (2,4,7;14).
1 2

(B-8) D:KX+§(P1+P2+P3)+§P4; (2,6,9;18).

We have 8 types in this case.

Case C. The case g =0 and r = 3.

We have to determine (qi, g2, ¢3). In this case, Ry = Ry = 0 and dimR3 =1 or 0
according to ¢ = 2 or ¢; > 3.

Case 1. ¢, > 3.
In this case, a = 3 and 4 < b < ¢. Hence degD <
1 =q=q9p=4
3
(C-l) D:KX—FZ(Pl—I—PQ—f-Pg), (3,4,4,12)

Hence either ¢; = 3 or

=~ =

Henceforce we assume ¢; = 3.
Ry # 0 if and only if g > 4. In this case, a = 3,b = 4 and ¢ > 5. Hence

degD < 60 =3 + 1 + £~ 2. Hence we have only 2 possibilities;
3

2 4
(C-Z) D:KX+§P1+ZP2+5P3; (3,4,5,13)



2 3
g3 — 1
UE]

1
Ry;=0,a=3,b>5and c> 6 and degD < 6 This implies g3 < 6.

2
Next, assume ¢; = ¢o = 3. Hence degD = —3 On the other hand, since

2 5

2 4

(C-6) D=Kx-+ %(Pl + P) + %Pg; (3,8,12;24).
This completes the case ¢ = 3.

Case 2. ¢, = 2.

In this case, a > 4 and Ry # 0 if and only if g3 > 4.

First, we consider the case ¢ =2 and ¢ = 3 (¢3 > 7).
In this case, deg[4D] = —1 = deg[5D] = deg[7D], deg[6D] = 0. Hence a = 6 and

1 8
b > 8. Hence degD < 8 = 97§ This shows that 7 < g3 < 9 and actually these
cases gives the hypersurfaces.

1 2 6

1 2 7

1 2 8
(C-g) D:Kx+§P1+§P2+§P3, (6,8,9,24)

Next, we consider the case ¢; =2 and ¢, > 4.

2
In this case, deg[4dD] = 0 and a = 4,b > 5,¢ > 6. Hence degD < — =

15
1 4 5

(5 + R + 6) — 2. Hence ¢ < 5 and if go = 5, the possibility is the following 2 cases.

1 4 5
(C-]_O) D:KX+§P1+_P2+6P37 (4,5,6,16)

3
1 4
(C-]_l) D:Kx+§P1+5(P2+P3), (4,5,10,20)

The remaining case is ¢; = 2,¢2 = 4 (g3 > 5).
Since dimRy; = 1 and R5; = 0 and hence a = 4,0 > 6,¢ > 7 and degD =

-1 3 3
a3 1 < oTR Hence 5 < ¢35 < 7 and actually these cases give hypersurfaces.
43

This finishes the classification !

1 3 4
(C-12) D:KX+§P1+ZP2+5P37 (4, 10,15,30)
1 3 )

1 3 6



3. THE CLASSIFICATION OF HYPERSURFACES WITH a(R) = 2.

In this section, we classify normal graded hypersurfaces of dimension 2 with
a(R) = 2.
We may assume that R = R(X, D) = k[u, v, w|/(f) with

deg(u,v,w; f) = (a,b,¢;h); h=a+b+c+2.

We always assume (a,b,c) = 1. Since R is Gorenstein with a(R) = 2, 2D is
linearly equivalent to Kx 4+ D’. Hence we may assume that

T Z_l
i=1 g

where 2E ~ Kx and every ¢; is odd.
h  a+b+c+2

Since degD = — = —— < 5,29 —2 < 2degD < 10 and we have g < 6.
abc abc

First, we divide the cases according to (1) a > 2, (2)a=1,b>2,0or (3) a=0b= 1.
Case 1. a > 2.

This is equivalent to say that Ry = H°(X,Ox (D)) = 0. If this is the case, we
have
9 3
degD < =-<1.
=993 1"
Since degD > g — 1, g =0 or 1 in this case.
For a while, we assume that g = 0.

Now, we can write

T Z—l
D= _Q+Zq2q. Fi.
i=1 v

i — 1 1
Hence R; = Ry = 0 and dimR3 = r — 2 since q2 > 3 for every ¢;. Hence
qi
12 1
a = 3 and degD < 33413 This implies that » < 4 and if » = 4, then
1
D=-Q+X¥ 3P

1
(2-1) 9=0D=-Q+z(Pi+B+P+F) (33412)

Now, we assume r = 3 and ¢; < ¢2 < g3. Then since dimR3 = 1, we have a = 3
and b > 5. Also, dimRy; = 0 and dimRs; = 2 (resp. 1, resp. 0) if g3 > 5 (resp.
Q1 =3,G2 > 5, 1esp. o = 3). .

2
If ¢4 >5,degD < S 55 & Hence we must have D = —Q + g(P1 + P, + Ps).

2
(2'2) g:O,D:—Q+g(P1+P2+P3), (37575715)



Next, consider the case ¢; = 3 and ¢o > 5. In this case, a = 3,b=5and ¢ > 7

17 1
and then degD < 5573 + R + == 1. Hence we are restricted to the following

2 cases.

1 2 3

2 2 3
Actually, if we put D = —g(oo) + 5(0) + ?(—1), then R = k[F,G, H] with
1 1 1
Fe—— T3 G=—— TS H=—— _
x(lx+1) 22 (x+1)2 22(x +1)3

F'G = FH?* + G*H.
Hence R k[X)Y, Z]/(XZ? +Y?Z — X*Y).

T7 with the relation

1 2
(2'4) gzoaD:_Q+§Pl+g(P2+P3>7 (375710720)

21 1
= 2— 4+ — — 1. Hence in

If =3, then a =3 and b > 7. HencedegD§3.7'9 379

this case, g3 = 5,7 or 9.

1 4

1 3
(2:6) g=0.D=-Q+5(P+P)+=P (3,7.1530).

1 2
(227) 9=0D=-Q+(P+P)+ =P (3,10,1530).

Now we have finished the case a > 2 and g = 0. Next, we treat the case a > 2
and g = 1. In this case, we put

~q—1
D=FE B,
T
where E € Div(X) with E # 0 and 2F ~ 0. Since [2D] = 0 and deg[3D] =r > 0,

10
we have a = 2 and b = 3. Hence degD < 5.3

< 1 and actually, we have r = 1

or 2.

11

If r = 2, then deg[4D] = 2 and we must have (a,b,c) = (2,3,4) and degD = o1
-1 -1 11

But since - + L = — is impossible, this case does not occur. Hence we

2q 2¢2 24

must have r = 1.

Since a = 2,b = 3,¢ = 4 is impossible as we have seen before, we must have

-1 2

D=F+ qQ—P with £ 4+ P > 0 and degD < 5 3.5 We have 2 possibilities;
q .

2 1
D=F+ SP and D = F + §P' But the in latter case, we must have a = 2,b =

1
3,¢c =9, which contradicts the fact degD = 3"



Hence we are reduced to the case.

2
(2-8) ¢g=1,D=F+ 5P with 2E ~ 0 and E #0, (2,3,5;12).
This finishes the case a > 2.

Case 2. ¢ =1 and b > 2.

In this case, degD <

T 9.9 < 2. Hence we have ¢ = 1 or 2 in this case.

Moreover, if g = 1, since [2D] = 0, we have b > 3 and degD <

<1
1-3-3 7~

q; —
2q;

= 1. Hence r < 3 in this case and if r = 3,

1
P,. Since [2D] = 0 in this case,

First, we assume g = 1 and D = ) /_,

b > 3 and we have degD <
1-3-3

1
D= (Pt Pt Py,

1
(2'9) gzlang(P1+P2+P3>7 (17373a9)

Next, we assume r = 2. Then b = 3 and ¢ > 5. We have degD < =

Hence we have 2 possibilities;

1 2
(210) g=1.D=3P+:P, (L3511).

There is a linear relation between T, GT®, HTS, G*T°, GHT?,G*T?, H*T, G*H,
where degT' = 1,degG = 3 and degH = 5.

1
(211) g=1D=3(A+P). (13,612

-1 15
Next, we assume D = qQ—P. In this case, b > 5 and degD < T 5.7

_3
-

q
Hence we have 3 possibilities; ¢ = 3,5, 7.

3
(2-12) g¢g=1,D= ?P, (1,5,7;15).

2
(2-13) ¢g=1,D= 5P, (1,5,8;16).

1
(2-14) ¢g=1,D= §P, (1,6,9;18).

i — 1
Next, we treat the case g =2, a =1,b > 2and D = E+ >, qQ—PZ-, with
ai
2F ~ Kx. Since [2D] ~ Kx in this case, we have a = 1,b = 2 and ¢ > 3. Thus we
1 1

havedegDS%zl#—g. Hencer§1andifrzl,thenD:D:E+§P.

(2-15) ¢=2,D=F with 2E ~ Kx, (1,2,5;10).



1
(2-16) ¢g=2,D= §P, (1,2,3;8).
This finishes the case a = 1,0 > 2.

Case 3. a=b=1.

c+4

In this case, degD =
c <A4.

. Since g > 3 in this case, degD > 2 and we have

(2-17) g¢g=6,D=FE with 2E ~ Kx, (1,1,1;5).
(2-18) g¢g=5,D=F with2E ~ Kx, (1,1,2;6).
(2-19) g¢g=3,D=E+3;Pwith2E ~ Kx, (1,1,3;7).
(2-20) ¢g=3,D=FE with2E ~ Kx, (1,1,4;8).

4. COMPLETE INTERSECTIONS WITH a(R) = 1.

In my talk at the conference, I talked about classification of normal graded com-
plete intersections of dimension 2 with a(R) = 1. Until now, I can not find a
satisfactory way to classify them. Here, I will show the results when the genus of
the curve is 0.

Proposition 4.1. Let R = ®,>0R, be a normal graded complete intersection Of
dimension 2 with Ry = k, a field, a(R) = 1 and Ry = 0. Then the embedded

dimension of R is at most 4.

This follows from the fact mH*(X, Ox) = 0, where m is the graded maximal ideal
of R and X — Spec (R) is a resolution of singularities of R. By the Briangon-Skoda
type argument, we can assert that m® C J, where J is a minimal reduction of m.
Then by the argument as in [NW], §2, we can deduce that the embedded dimension
of R is at most 4. Conversely, if R is Gorenstein with the embedded dimension 4,
then R is a complete intersection by the famous result of J.-P. Serre.

Until now, I can not find a satisfactory method of classification for this case. Actu-
ally, what I do is only to restrict the embedding dimension. So, I list only the results
in this case. We list the divisor D on X = P! with R(X, D) & k[u,v,w, 2]/(f, 9).
We also put deg(u,v,w, z; f,g) = (a,b,¢,d; g, h) with g+h =a+b+c+d+ 1 with
a <b<c<dand g <h in the following table.

1
(3-1) D:KX+§(P1+...+P6), (2,2,2,3;4,6).
1 3
(3-2) D:KX+§(P1++P4)+ZP5> (2,2,3,4,6,6)
1 2
(3-3) D:Kx+§(P1+P2+P3)+§(P4+P5), (2,2,3,3,5,6)

2
(3-4) D=Kx+3(Pit...+F) (233306.0).



2

(34) D=Kx+3(Pit...+F). (23330606)
1 2 3

(3-5) D:Kx+§P1+§(P2+P3)+ZP4, (2,3,3,4;6,7).
1 2 3

(3-5) D:KX+§P1+§(P2+P3)+ZP4> (2,3,3,4,6,7)
1 3

(3-6) D:KX+§(P1+P2)+Z(P3+P4)> (2,3,4,4,6,8)
1 2 4

(3-7) D:Kx+§(P1+P2)+§P3+gP47 (2,3,4,5;7,8).
1 5)

(3-8) D=Kx+ 5(P1 + P+ P3) + 6P4, (2,4,5,6;8,10).
1 5)

(3-9) D:KX+§(P1+P2+P3)+6P4, (2,4,5,6,8,10)
3 4

(3-10) D:Kx—f-z(Pl‘FPg)‘l—ng, (3,4,4,5,8,9)
2 4

(3-11) D =Kx+ P+ (PP, (34,558 10).
2 3 5)

(3-12) D=Kx+ P+ P+ Py (3,4,569,10).
2 6

(3-13) D:Kx—f-g(Pl‘FPg)‘l‘?Pg, (3,5,6,7,10,12)
1 )

(3-14) D =Kx+ P+ (P+Py). (4,5.6,610,12).
1 4 6

(315) D=Kx+ P+ :P+oP (4.5.6711,12).
1 3 7

(3-16) D =Kx+ P+ Pt Py (4,67,81214)
1 2 9

(3-17) D =Kx+P+ 3P+ 5P (6.8,9,10:16,18).
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