CLASSIFICATION OF 2－DIMENSIONAL GRADED NORMAL HYPERSURFACES WITH $a(R)=1$ ．

KEI－ICHI WATANABE（日本大学•文理学部•数学科）

Introduction

Inspired by the talk of Kyoji Saito at the Toyama Conference，Aug．2007，I tried the classification of 2－dimensional graded normal hypersurfaces with $a(R)=1$ using Demazure＇s construction of normal graded rings．Since the classificaion is so simple and nearly automatic，I want to introduce it．

Although this classification is＂known＂in the literature（cf．［S］，［P1］），it seems that the systematic method of classification is not known．So，I think this is worth－ while to be published in some form．

Also，I present here the classification of normal two－dimensional hypersurfaces with $a(R)=2$ and normal graded complete intersections with $a(R)=1$ and $\operatorname{Proj}(R) \cong \mathbb{P}^{1}$ ．

1．Preliminaries

Let $R=k[u, v, w] /(f)$ be a 2－dimensional graded normal hypersurface，where k is an algebraically closed field of any characteristic．We put $X=\operatorname{Proj}(R)$ ．Since $\operatorname{dim} R=2$ and R is normal，X is a smooth curve．Then by the construction of Zariski and Demazure（［1］，［5］），there is an ample \mathbb{Q}－Cartier divisor D（that is，$N D$ is an ample divisor on X for some positive integer N ），such that

$$
R=R(X, D)=\oplus_{n \geq 0} H^{0}\left(X, O_{X}(n D)\right) \cdot T^{n} \subset k(X)[T],
$$

where T is a variable over $k(X)$ and

$$
H^{0}\left(X, O_{X}(n D)\right)=\left\{f \in k(X) \mid \operatorname{div}_{X}(f)+n D \geq 0\right\} \cup\{0\} .
$$

Now，let us begin the classification．In the following，X is a smooth curve of genus g and D is a fractional divisor on X such that $N D$ is an ample integral（Cartier） divisor for some $N>0$ ．

We denote

$$
D=D_{0}+\sum_{i=1}^{r} \frac{p_{i}}{q_{i}} P_{i} \quad\left(\forall i,\left(p_{i}, q_{i}\right)=1\right)
$$

where D_{0} is an integral divisor；a divisor with integer coefficients．In this case，we denote

$$
D^{\prime}=\sum_{i=1}^{r} \frac{q_{i}-1}{q_{i}} P_{i} .
$$

At the same time，by our assumption $R \cong k[u, v, w] /(f)$ ．If $\operatorname{deg}(u, v, w ; f)=$ $(a, b, c ; h)$ ，then by［2］，

$$
a(R)=h-(a+b+c) .
$$

We always assume $\operatorname{deg}(u, v, w ; f)=(a, b, c ; h)$ and also that $a \leq b \leq c$.
Proposition 1.1. (Fundamental formulas) Assume that $R=R(X, D)$
$\cong k[u, v, w] /(f)$ with $\operatorname{deg}(u, v, w ; f)=(a, b, c ; h)$ and $a(R)=h-(a+b+c)=1$. Then we have the following equalities.
(1) [W] Since R is Gorenstein with $a(R)=1$, we have

$$
D \sim K_{X}+D^{\prime}=K_{X}+\sum_{i=1}^{r} \frac{q_{i}-1}{q_{i}} P_{i},
$$

where, in general, $D_{1} \sim D_{2}$ means that $D_{1}-D_{2}=\operatorname{div}_{X}(f)$ for some $f \in k(X)$.
(2) [Tomari's formula] If $P(R, t)=\sum_{n \geq 0} \operatorname{dim} R_{n} t^{n}$,

$$
\lim _{t \rightarrow 1}(1-t)^{2} P(R, t)=\operatorname{deg} D
$$

(3) Since $P(R, t)=\frac{1-t^{h}}{\left(1-t^{a}\right)\left(1-t^{b}\right)\left(1-t^{c}\right)}$, we have

$$
\operatorname{deg} D=\frac{h}{a b c}=\frac{1}{a b c}+\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c} .
$$

Note that the latter expression is a decreasing function of a, b, c.
2. The classification of the hypersurfaces with $a(R)=1$.

Henceforce, we put $D=K_{X}+\sum_{i=1}^{r} \frac{q_{i}-1}{q_{i}} P_{i}$. We always use the letter r in this meaning. From 1.1 (3), the maximal value of $\operatorname{deg} D$ is taken when $a=b=$ $c=1$ and $\operatorname{deg} D=4$ in that case.

Case A. The case $g>0$.

Assume that $g \geq 1$. Since $\operatorname{deg}(D) \leq 4$, and $\operatorname{deg} D \geq \operatorname{deg} K_{X}=2 g-2, g \leq 3$ and if $g=3, D=K_{X}$. We list the cases by giving the form of D and $(a, b, c ; h)$. We can easily deduce the general form of the equation f from this data. Also, if f with the given weight has an isolated singularity, then $k[u, v, w] /(f) \cong R(X, D)$, where D is a divisor of given form.
(A-1) $\quad g=3, D=K_{X} ; \quad(1,1,1 ; 4)$.
Next, consider the case $g=2$. Note that $\operatorname{dim} R_{1}=\operatorname{dim} H^{0}\left(K_{X}\right)=g=2$, we have $a=b=1$ and $\operatorname{deg} D=1+\frac{3}{c} \leq \frac{5}{2} \quad(c \geq 2)$. Since, either $\operatorname{deg} D=2, D=K_{X}$ or $\operatorname{deg} D \geq \frac{5}{2}$, we have 2 cases.
(A-2) $\quad g=2, D=K_{X} ; \quad(1,1,3 ; 6)$.
(A-3) $\quad g=2, D=K_{X}+\frac{1}{2} P ; \quad(1,1,2 ; 5)$.

Next, assume $g=1$. In this case, $a=1,2 \leq b \leq c$ and the maximal value of $\operatorname{deg} D$ is $\frac{3}{2}$. Since on the other hand, $\operatorname{deg} D \geq \frac{r}{2}$ and thus $r \leq 3$ and if $r=3$, $D=\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right)$.
(A-4) $\quad g=1, D=\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right) ; \quad(1,2,2 ; 6)$.
Also, since $\operatorname{dim} R_{2}=r$, if $r=2$, then $a=1, b=2, c \geq 3, \operatorname{deg}(D) \leq \frac{7}{6}$.
(A-5) $\quad g=1, D=\frac{1}{2}\left(P_{1}+P_{2}\right) ; \quad(1,2,4 ; 8)$.
(A-6) $\quad g=1, D=\frac{1}{2} P_{1}+\frac{2}{3} P_{2} ; \quad(1,2,3 ; 7)$.
If $g=1$ and $D=\frac{q-1}{q} P$, we have $q-1$ new generators in degrees $1,3, \ldots, q$. Hence $q \leq 4$.
$a=1,3 \leq b, c$ and $\operatorname{deg} D \leq \frac{8}{9}$.
(A-7) $\quad g=1, D=\frac{1}{2} P ; \quad(1,4,6 ; 12)$.
(A-8) $\quad g=1, D=\frac{2}{3} P ; \quad(1,3,5 ; 10)$.
(A-9) $\quad g=1, D=\frac{3}{4} P ; \quad(1,3,4 ; 9)$.
We have 9 types when $g \geq 1$.
Case B. The case $g=0$ and $r \geq 4$.
In the following, we always assume $g=0$. Since $\operatorname{deg}\left(K_{X}\right)=-2$ and $\operatorname{deg} D>$ 0 , we have $r \geq 3$. On the other hand, since $R_{1}=H^{0}\left(K_{X}\right)=0, a \geq 2$ and $\operatorname{deg} D \leq \frac{7}{8}<1$. Since $\operatorname{deg} D \geq-2+r / 2$, we have $r \leq 5$.

In this subsection, we treat the cases where $r=4,5$.
Now, since $\operatorname{deg}[2 D]=r-4, \operatorname{dim} R_{2}=2,1$, respectively, if $r=5,4$.
Thus if $r=5$, then $a=b=2$ and $c \geq 3$. Hence $\operatorname{deg} D \leq \frac{2}{3}$. Since $3 \cdot \frac{1}{2}+2 \cdot \frac{2}{3}-2=$ $\frac{5}{6}>\frac{2}{3}$, the only possible cases for $\left(q_{1}, \ldots, q_{5}\right)$ are $(2,2,2,2,2)$ and $(2,2,2,2,3)$.

$$
D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}+\ldots+P_{5}\right) ; \quad(2,2,5 ; 10) .
$$

(B-2) $\quad D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}+P_{3}+P_{4}\right)+\frac{2}{3} P_{5} ; \quad(2,2,3 ; 8)$.

Henceforce we assume $r=4$ and express D by $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ and we always assume $q_{1} \leq q_{2} \leq q_{3} \leq q_{4}$. In this case, $a=2$ and $3 \leq b \leq c$. Hence $\operatorname{deg} D \leq \frac{1}{2}$. Since $4 . \frac{2}{3}-2>\frac{1}{2}, q_{1}=2$ and $q_{4} \geq 3$.

Let s be the number of $q_{i}>2(1 \leq s \leq 3)$. Then since $\operatorname{deg}[3 D]=-6+8-s$, $\operatorname{dim} R_{3}=0,1,2$ when $s=1,2,3$, respectively.

If $s=3, \operatorname{dim} R_{2}+\operatorname{dim} R_{3}=3$ and we must have $(a, b, c ; h)=(2,3,3 ; 9)$.

$$
\begin{equation*}
D=K_{X}+\frac{1}{2} P_{1}+\frac{2}{3}\left(P_{2}+P_{3}+P_{4}\right) ; \quad(2,3,3 ; 9) . \tag{B-3}
\end{equation*}
$$

If $s=2, a=2, b=3$ and $c \geq 4$ and $\operatorname{deg} D=\frac{1}{6}+\frac{1}{c} \leq \frac{5}{12}$. Also, since $-2+\left(\frac{1}{2}+\frac{1}{2}+\frac{2}{3}+\frac{3}{4}=\frac{5}{12}\right.$, we have 2 types.
(B-4) $\quad D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}\right)+\frac{2}{3}\left(P_{3}+P_{4}\right)$;
(B-5) $\quad D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}\right)+\frac{2}{3} P_{3}+\frac{3}{4} P_{4}$;
Now we trat the case $(2,2,2, q), q \geq 3$. In this case, $R_{3}=0$ and $\operatorname{dim} R_{4}=1$ or 2 according to $q=3$ or $q \geq 4$. In the latter case, $\operatorname{dim} R_{5}=0$ or 1 according to $q=4$ or $q \geq 5$. Hence, if $q \geq 5$, we have already 3 generators of R.

$$
\begin{equation*}
D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right)+\frac{4}{5} P_{4} ; \quad(2,4,5 ; 12) . \tag{B-6}
\end{equation*}
$$

(B-8) $\quad D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right)+\frac{2}{3} P_{4}$
We have 8 types in this case.
Case C. The case $g=0$ and $r=3$.
We have to determine $\left(q_{1}, q_{2}, q_{3}\right)$. In this case, $R_{1}=R_{2}=0$ and $\operatorname{dim} R_{3}=1$ or 0 according to $q_{1}=2$ or $q_{1} \geq 3$.

Case 1. $q_{1} \geq 3$.
In this case, $a=3$ and $4 \leq b \leq c$. Hence $\operatorname{deg} D \leq \frac{1}{4}$. Hence either $q_{1}=3$ or $q_{1}=q_{2}=q_{3}=4$.
(C-1) $\quad D=K_{X}+\frac{3}{4}\left(P_{1}+P_{2}+P_{3}\right) ; \quad(3,4,4 ; 12)$.
Henceforce we assume $q_{1}=3$.
$R_{4} \neq 0$ if and only if $q_{2} \geq 4$. In this case, $a=3, b=4$ and $c \geq 5$. Hence $\operatorname{deg} D \leq \frac{13}{60}=\frac{2}{3}+\frac{3}{4}+\frac{4}{5}-2$. Hence we have only 2 possibilities;

$$
\text { (C-2) } \quad D=K_{X}+\frac{2}{3} P_{1}+\frac{3}{4} P_{2}+\frac{4}{5} P_{3} ; \quad(3,4,5 ; 13) .
$$

$$
\begin{equation*}
D=K_{X}+\frac{2}{3} P_{1}+\frac{3}{4}\left(P_{2}+P_{3}\right) ; \quad(3,4,8 ; 16) . \tag{C-3}
\end{equation*}
$$

Next, assume $q_{1}=q_{2}=3$. Hence $\operatorname{deg} D=\frac{q_{3}-1}{q_{3}}-\frac{2}{3}$. On the other hand, since $R_{4}=0, a=3, b \geq 5$ and $c \geq 6$ and $\operatorname{deg} D \leq \frac{1}{6}$. This implies $q_{3} \leq 6$.
(C-4) $\quad D=K_{X}+\frac{2}{3}\left(P_{1}+P_{2}\right)+\frac{5}{6} P_{3} ; \quad(3,5,6 ; 15)$.
(C-5) $\quad D=K_{X}+\frac{2}{3}\left(P_{1}+P_{2}\right)+\frac{4}{5} P_{3} ; \quad(3,5,9 ; 18)$.
(C-6) $\quad D=K_{X}+\frac{2}{3}\left(P_{1}+P_{2}\right)+\frac{3}{4} P_{3} ; \quad(3,8,12 ; 24)$.
This completes the case $q_{1}=3$.
Case 2. $q_{1}=2$.
In this case, $a \geq 4$ and $R_{4} \neq 0$ if and only if $q_{2} \geq 4$.
First, we consider the case $q_{1}=2$ and $q_{2}=3\left(q_{3} \geq 7\right)$.
In this case, $\operatorname{deg}[4 D]=-1=\operatorname{deg}[5 D]=\operatorname{deg}[7 D], \operatorname{deg}[6 D]=0$. Hence $a=6$ and $b \geq 8$. Hence $\operatorname{deg} D \leq \frac{1}{18}=\frac{8}{9}-\frac{5}{6}$. This shows that $7 \leq q_{3} \leq 9$ and actually these cases gives the hypersurfaces.
(C-7) $\quad D=K_{X}+\frac{1}{2} P_{1}+\frac{2}{3} P_{2}+\frac{6}{7} P_{3} ; \quad(6,14,21 ; 42)$.
$\begin{aligned}(\mathrm{C}-8) & D & =K_{X}+\frac{1}{2} P_{1}+\frac{2}{3} P_{2}+\frac{7}{8} P_{3} ; & (6,8,15 ; 30) . \\ (\mathrm{C}-9) & D & =K_{X}+\frac{1}{2} P_{1}+\frac{2}{3} P_{2}+\frac{8}{9} P_{3} ; & (6,8,9 ; 24) .\end{aligned}$
Next, we consider the case $q_{1}=2$ and $q_{2} \geq 4$.
In this case, $\operatorname{deg}[4 D]=0$ and $a=4, b \geq 5, c \geq 6$. Hence $\operatorname{deg} D \leq \frac{2}{15}=$ $\left(\frac{1}{2}+\frac{4}{5}+\frac{5}{6}\right)-2$. Hence $q_{2} \leq 5$ and if $q_{2}=5$, the possibility is the following 2 cases.
(C-10)

$$
D=K_{X}+\frac{1}{2} P_{1}+\frac{4}{5} P_{2}+\frac{5}{6} P_{3} ; \quad(4,5,6 ; 16)
$$

(C-11) $\quad D=K_{X}+\frac{1}{2} P_{1}+\frac{4}{5}\left(P_{2}+P_{3}\right) ; \quad(4,5,10 ; 20)$.
The remaining case is $q_{1}=2, q_{2}=4\left(q_{3} \geq 5\right)$.
Since $\operatorname{dim} R_{4}=1$ and $R_{5}=0$ and hence $a=4, b \geq 6, c \geq 7$ and $\operatorname{deg} D=$ $\frac{q_{3}-1}{q_{3}}-\frac{3}{4} \leq \frac{3}{28}$. Hence $5 \leq q_{3} \leq 7$ and actually these cases give hypersurfaces.

This finishes the classification !

$$
\begin{array}{lll}
(\mathrm{C-12)} & D & =K_{X}+\frac{1}{2} P_{1}+\frac{3}{4} P_{2}+\frac{4}{5} P_{3} ; \tag{C-12}\\
(\mathrm{C}-13) & D & (4,10,15 ; 30) . \\
(\mathrm{C}-14) & D & =K_{X}+\frac{1}{2} P_{1}+\frac{3}{4} P_{2}+\frac{1}{6} P_{1}+\frac{3}{4} P_{2} ; \\
& (4,6,11 ; 22) . \\
& P_{3} ; & (4,6,7 ; 18) .
\end{array}
$$

3. The classification of hypersurfaces with $a(R)=2$.

In this section, we classify normal graded hypersurfaces of dimension 2 with $a(R)=2$.

We may assume that $R=R(X, D) \cong k[u, v, w] /(f)$ with

$$
\operatorname{deg}(u, v, w ; f)=(a, b, c ; h) ; \quad h=a+b+c+2
$$

We always assume $(a, b, c)=1$. Since R is Gorenstein with $a(R)=2,2 D$ is linearly equivalent to $K_{X}+D^{\prime}$. Hence we may assume that

$$
D=E+\sum_{i=1}^{r} \frac{q_{i}-1}{2 q_{i}} P_{i}
$$

where $2 E \sim K_{X}$ and every q_{i} is odd.
Since $\operatorname{deg} D=\frac{h}{a b c}=\frac{a+b+c+2}{a b c} \leq 5,2 g-2 \leq 2 \operatorname{deg} D \leq 10$ and we have $g \leq 6$.
First, we divide the cases according to (1) $a \geq 2$, (2) $a=1, b \geq 2$, or (3) $a=b=1$.
Case 1. $a \geq 2$.
This is equivalent to say that $R_{1}=H^{0}\left(X, \mathcal{O}_{X}(D)\right)=0$. If this is the case, we have

$$
\operatorname{deg} D \leq \frac{9}{2 \cdot 2 \cdot 3}=\frac{3}{4}<1 .
$$

Since $\operatorname{deg} D \geq g-1, g=0$ or 1 in this case.
For a while, we assume that $g=0$.
Now, we can write

$$
D=-Q+\sum_{i=1}^{r} \frac{q_{i}-1}{2 q_{i}} P_{i} .
$$

Hence $R_{1}=R_{2}=0$ and $\operatorname{dim} R_{3}=r-2$ since $\frac{q_{i}-1}{2 q_{i}} \geq \frac{1}{3}$ for every q_{i}. Hence $a=3$ and $\operatorname{deg} D \leq \frac{12}{3 \cdot 3 \cdot 4}=\frac{1}{3}$. This implies that $r \leq 4$ and if $r=4$, then $D=-Q+\sum_{i=1}^{4} \frac{1}{3} P_{i}$.

$$
\begin{equation*}
g=0, D=-Q+\frac{1}{3}\left(P_{1}+P_{2}+P_{3}+P_{4}\right), \quad(3,3,4 ; 12) . \tag{2-1}
\end{equation*}
$$

Now, we assume $r=3$ and $q_{1} \leq q_{2} \leq q_{3}$. Then since $\operatorname{dim} R_{3}=1$, we have $a=3$ and $b \geq 5$. Also, $\operatorname{dim} R_{4}=0$ and $\operatorname{dim} R_{5}=2$ (resp. 1, resp. 0) if $q_{3} \geq 5$ (resp. $q_{1}=3, q_{2} \geq 5$, resp. $q_{2}=3$).

If $q_{1} \geq 5, \operatorname{deg} D \leq \frac{15}{3 \cdot 5 \cdot 5}=\frac{1}{5}$. Hence we must have $D=-Q+\frac{2}{5}\left(P_{1}+P_{2}+P_{3}\right)$.

$$
\begin{equation*}
g=0, D=-Q+\frac{2}{5}\left(P_{1}+P_{2}+P_{3}\right), \quad(3,5,5 ; 15) . \tag{2-2}
\end{equation*}
$$

Next, consider the case $q_{1}=3$ and $q_{2} \geq 5$. In this case, $a=3, b=5$ and $c \geq 7$ and then $\operatorname{deg} D \leq \frac{17}{3 \cdot 5 \cdot 7}=\frac{1}{3}+\frac{2}{5}+\frac{3}{7}-1$. Hence we are restricted to the following 2 cases.

$$
\begin{equation*}
g=0, D=-Q+\frac{1}{3} P_{1}+\frac{2}{5} P_{2}+\frac{3}{7} P_{3}, \quad(3,5,7 ; 17) . \tag{2-3}
\end{equation*}
$$

Actually, if we put $D=-\frac{2}{3}(\infty)+\frac{2}{5}(0)+\frac{3}{7}(-1)$, then $R=k[F, G, H]$ with $F=\frac{1}{x(x+1)} T^{3}, G=\frac{1}{x^{2}(x+1)^{2}} T^{5}, H=\frac{1}{x^{2}(x+1)^{3}} T^{7}$ with the relation

$$
F^{4} G=F H^{2}+G^{2} H .
$$

Hence $R \cong k[X, Y, Z] /\left(X Z^{2}+Y^{2} Z-X^{4} Y\right)$.

$$
\begin{equation*}
g=0, D=-Q+\frac{1}{3} P_{1}+\frac{2}{5}\left(P_{2}+P_{3}\right), \quad(3,5,10 ; 20) . \tag{2-4}
\end{equation*}
$$

If $q_{2}=3$, then $a=3$ and $b \geq 7$. Hence $\operatorname{deg} D \leq \frac{21}{3 \cdot 7 \cdot 9}=2 \frac{1}{3}+\frac{4}{9}-1$. Hence in this case, $q_{3}=5,7$ or 9 .

$$
\begin{align*}
& g=0, D=-Q+\frac{1}{3}\left(P_{1}+P_{2}\right)+\frac{4}{9} P_{3}, \quad(3,7,9 ; 21) . \tag{2-5}\\
& g=0, D=-Q+\frac{1}{3}\left(P_{1}+P_{2}\right)+\frac{3}{7} P_{3}, \quad(3,7,15 ; 30) . \tag{2-6}\\
& g=0, D=-Q+\frac{1}{3}\left(P_{1}+P_{2}\right)+\frac{2}{5} P_{3}, \quad(3,10,15 ; 30) .
\end{align*}
$$

Now we have finished the case $a \geq 2$ and $g=0$. Next, we treat the case $a \geq 2$ and $g=1$. In this case, we put

$$
D=E+\sum_{i=1}^{r} \frac{q_{i}-1}{2 q_{i}} P_{i}
$$

where $E \in \operatorname{Div}(X)$ with $E \neq 0$ and $2 E \sim 0$. Since $[2 D]=0$ and $\operatorname{deg}[3 D]=r>0$, we have $a=2$ and $b=3$. Hence $\operatorname{deg} D \leq \frac{10}{2 \cdot 3 \cdot 3}<1$ and actually, we have $r=1$ or 2 .

If $r=2$, then $\operatorname{deg}[4 D]=2$ and we must have $(a, b, c)=(2,3,4)$ and $\operatorname{deg} D=\frac{11}{24}$. But since $\frac{q_{1}-1}{2 q_{1}}+\frac{q_{2}-1}{2 q_{2}}=\frac{11}{24}$ is impossible, this case does not occur. Hence we must have $r=1$.

Since $a=2, b=3, c=4$ is impossible as we have seen before, we must have $D=E+\frac{q-1}{2 q} P$ with $E+P \geq 0$ and $\operatorname{deg} D \leq \frac{12}{2 \cdot 3 \cdot 5}$. We have 2 possibilities; $D=E+\frac{2}{5} P$ and $D=E+\frac{1}{3} P$. But the in latter case, we must have $a=2, b=$ $3, c=9$, which contradicts the fact $\operatorname{deg} D=\frac{1}{3}$.

Hence we are reduced to the case.
(2-8) $\quad g=1, D=E+\frac{2}{5} P$ with $2 E \sim 0$ and $E \neq 0, \quad(2,3,5 ; 12)$.
This finishes the case $a \geq 2$.
Case 2. $a=1$ and $b \geq 2$.
In this case, $\operatorname{deg} D \leq \frac{7}{1 \cdot 2 \cdot 2}<2$. Hence we have $g=1$ or 2 in this case. Moreover, if $g=1$, since $[2 D]=0$, we have $b \geq 3$ and $\operatorname{deg} D \leq \frac{9}{1 \cdot 3 \cdot 3} \leq 1$.

First, we assume $g=1$ and $D=\sum_{i=1}^{r} \frac{q_{i}-1}{2 q_{i}} P_{i}$. Since $[2 D]=0$ in this case, $b \geq 3$ and we have $\operatorname{deg} D \leq \frac{9}{1 \cdot 3 \cdot 3}=1$. Hence $r \leq 3$ in this case and if $r=3$, $D=\frac{1}{3}\left(P_{1}+P_{2}+P_{3}\right)$.
$(\mathbf{2 - 9}) \quad g=1, D=\frac{1}{3}\left(P_{1}+P_{2}+P_{3}\right), \quad(1,3,3 ; 9)$.
Next, we assume $r=2$. Then $b=3$ and $c \geq 5$. We have $\operatorname{deg} D \leq \frac{11}{1 \cdot 3 \cdot 5}=\frac{1}{3}+\frac{2}{5}$. Hence we have 2 possibilities;
(2-10) $\quad g=1, D=\frac{1}{3} P_{1}+\frac{2}{5} P_{2}, \quad(1,3,5 ; 11)$.
There is a linear relation between $T^{11}, G T^{8}, H T^{6}, G^{2} T^{5}, G H T^{3}, G^{3} T^{2}, H^{2} T, G^{2} H$, where $\operatorname{deg} T=1, \operatorname{deg} G=3$ and $\operatorname{deg} H=5$.
$(2-11) \quad g=1, D=\frac{1}{3}\left(P_{1}+P_{2}\right), \quad(1,3,6 ; 12)$.
Next, we assume $D=\frac{q-1}{2 q} P$. In this case, $b \geq 5$ and $\operatorname{deg} D \leq \frac{15}{1 \cdot 5 \cdot 7}=\frac{3}{7}$. Hence we have 3 possibilities; $q=3,5,7$.
(2-12) $\quad g=1, D=\frac{3}{7} P, \quad(1,5,7 ; 15)$.
(2-13) $\quad g=1, D=\frac{2}{5} P, \quad(1,5,8 ; 16)$.
$(2-14) \quad g=1, D=\frac{1}{3} P, \quad(1,6,9 ; 18)$.
Next, we treat the case $g=2, a=1, b \geq 2$ and $D=E+\sum_{i=1}^{r} \frac{q_{i}-1}{2 q_{i}} P_{i}$, with $2 E \sim K_{X}$. Since $[2 D] \sim K_{X}$ in this case, we have $a=1, b=2$ and $c \geq 3$. Thus we have $\operatorname{deg} D \leq \frac{8}{1 \cdot 2 \cdot 3}=1+\frac{1}{3}$. Hence $r \leq 1$ and if $r=1$, then $D=D=E+\frac{1}{3} P$.
(2-15) $\quad g=2, D=E$ with $2 E \sim K_{X}, \quad(1,2,5 ; 10)$.

$$
\begin{equation*}
g=2, D=\frac{1}{3} P, \quad(1,2,3 ; 8) . \tag{2-16}
\end{equation*}
$$

This finishes the case $a=1, b \geq 2$.
Case 3. $a=b=1$.
In this case, $\operatorname{deg} D=\frac{c+4}{c}$. Since $g \geq 3$ in this case, $\operatorname{deg} D \geq 2$ and we have $c \leq 4$.
(2-17) $\quad g=6, D=E$ with $2 E \sim K_{X}, \quad(1,1,1 ; 5)$.
(2-18) $\quad g=5, D=E$ with $2 E \sim K_{X}, \quad(1,1,2 ; 6)$.
(2-19) $\quad g=3, D=E+\frac{1}{3} P$ with $2 E \sim K_{X}, \quad(1,1,3 ; 7)$.
(2-20) $\quad g=3, D=E$ with $2 E \sim K_{X}, \quad(1,1,4 ; 8)$.

4. Complete intersections with $a(R)=1$.

In my talk at the conference, I talked about classification of normal graded complete intersections of dimension 2 with $a(R)=1$. Until now, I can not find a satisfactory way to classify them. Here, I will show the results when the genus of the curve is 0 .

Proposition 4.1. Let $R=\oplus_{n \geq 0} R_{n}$ be a normal graded complete intersection of dimension 2 with $R_{0}=k$, a field, $a(R)=1$ and $R_{1}=0$. Then the embedded dimension of R is at most 4 .

This follows from the fact $\mathfrak{m} H^{1}\left(X, \mathcal{O}_{X}\right)=0$, where \mathfrak{m} is the graded maximal ideal of R and $X \rightarrow \operatorname{Spec}(R)$ is a resolution of singularities of R. By the Briançon-Skoda type argument, we can assert that $\mathfrak{m}^{3} \subset J$, where J is a minimal reduction of \mathfrak{m}. Then by the argument as in [NW], $\S 2$, we can deduce that the embedded dimension of R is at most 4. Conversely, if R is Gorenstein with the embedded dimension 4, then R is a complete intersection by the famous result of J.-P. Serre.

Until now, I can not find a satisfactory method of classification for this case. Actually, what I do is only to restrict the embedding dimension. So, I list only the results in this case. We list the divisor D on $X=\mathbb{P}^{1}$ with $R(X, D) \cong k[u, v, w, z] /(f, g)$. We also put $\operatorname{deg}(u, v, w, z ; f, g)=(a, b, c, d ; g, h)$ with $g+h=a+b+c+d+1$ with $a \leq b \leq c \leq d$ and $g \leq h$ in the following table.
$(3-1) \quad D=K_{X}+\frac{1}{2}\left(P_{1}+\ldots+P_{6}\right), \quad(2,2,2,3 ; 4,6)$.

$$
\begin{align*}
D & =K_{X}+\frac{1}{2}\left(P_{1}+\ldots+P_{4}\right)+\frac{3}{4} P_{5}, \quad(2,2,3,4 ; 6,6) . \tag{3-2}\\
D & =K_{X}+\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right)+\frac{2}{3}\left(P_{4}+P_{5}\right), \quad(2,2,3,3 ; 5,6) . \tag{3-3}\\
D & =K_{X}+\frac{2}{3}\left(P_{1}+\ldots+P_{4}\right), \quad(2,3,3,3 ; 6,6) .
\end{align*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{2}{3}\left(P_{1}+\ldots+P_{4}\right), \quad(2,3,3,3 ; 6,6) . \tag{3-4}
\end{equation*}
$$

$$
\begin{align*}
& D=K_{X}+\frac{1}{2} P_{1}+\frac{2}{3}\left(P_{2}+P_{3}\right)+\frac{3}{4} P_{4}, \quad(2,3,3,4 ; 6,7) . \tag{3-5}\\
& D=K_{X}+\frac{1}{2} P_{1}+\frac{2}{3}\left(P_{2}+P_{3}\right)+\frac{3}{4} P_{4}, \quad(2,3,3,4 ; 6,7) . \tag{3-5}
\end{align*}
$$

$$
\begin{align*}
& D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}\right)+\frac{3}{4}\left(P_{3}+P_{4}\right), \quad(2,3,4,4 ; 6,8) . \tag{3-6}\\
& D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}\right)+\frac{2}{3} P_{3}+\frac{4}{5} P_{4}, \quad(2,3,4,5 ; 7,8) . \tag{3-7}
\end{align*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right)+\frac{5}{6} P_{4}, \quad(2,4,5,6 ; 8,10) . \tag{3-8}
\end{equation*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{1}{2}\left(P_{1}+P_{2}+P_{3}\right)+\frac{5}{6} P_{4}, \quad(2,4,5,6 ; 8,10) . \tag{3-9}
\end{equation*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{3}{4}\left(P_{1}+P_{2}\right)+\frac{4}{5} P_{3}, \quad(3,4,4,5 ; 8,9) . \tag{3-10}
\end{equation*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{2}{3} P_{1}+\frac{4}{5}\left(P_{2}+P_{3}\right), \quad(3,4,5,5 ; 8,10) \tag{3-11}
\end{equation*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{2}{3} P_{1}+\frac{3}{4} P_{2}+\frac{5}{6} P_{3}, \quad(3,4,5,6 ; 9,10) . \tag{3-12}
\end{equation*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{2}{3}\left(P_{1}+P_{2}\right)+\frac{6}{7} P_{3}, \quad(3,5,6,7 ; 10,12) . \tag{3-13}
\end{equation*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{1}{2} P_{1}+\frac{5}{6}\left(P_{2}+P_{3}\right), \quad(4,5,6,6 ; 10,12) . \tag{3-14}
\end{equation*}
$$

$$
\begin{equation*}
D=K_{X}+\frac{1}{2} P_{1}+\frac{4}{5} P_{2}+\frac{6}{7} P_{3}, \quad(4,5,6,7 ; 11,12) . \tag{3-15}
\end{equation*}
$$

$$
\begin{align*}
& D=K_{X}+\frac{1}{2} P_{1}+\frac{3}{4} P_{2}+\frac{7}{8} P_{3}, \quad(4,6,7,8 ; 12,14) . \tag{3-16}\\
& D=K_{X}+\frac{1}{2} P_{1}+\frac{2}{3} P_{2}+\frac{9}{10} P_{3}, \quad(6,8,9,10 ; 16,18) .
\end{align*}
$$

References

[1] [Dem] Demazure, M.: Anneaux gradués normaux ; in Seminarire Demazure -Giraud Teissier, 1979. Ecole Polytechnique In:Lê Dũng Tráng(ed.) Introduction a la théorie des singularités II; Méthodes algébriques et géométriques (Travaux En Cours vol.37, pp.35-68) Paris:Hermann 1988
[2] [GW] Goto, S., Watanabe, K.-i.: On graded rings I. J. Math. Soc. Japan. 30 (1978) 179-213.
[3] [NW] Nakajima, H., Watanabe, K.-i.: The classification of quotient singularities which are complete intersections, in "Complete Intersections", Lect. Notes in Math. 1092 (1984), 102-120.
[4] [P1] Pinkham, H.: Singularités exceptionelles, la dualité etrange d'Arnold et les surfaces K3, C.R.Acad.Sc.Paris, 284 (A) (1977), 615-618.
[5] [P2] Pinkham, H.: Normal surface singularities with \mathbf{C}^{*}-action Math. Ann. 227, (1977) 183-193
[6] [S] Saito, K.: Regular system of weights and associated singularities, In:Suwa,T., Wagreich,Ph.(ed.) Complex analytic singularities. (Adv. Studies in pure Math.8,479-526) Tokyo Amsterdam: Kinokuniya-North-Holland 1986
[7] [W] Watanabe, K.-i.: Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83,(1981) 203-211

Department of Mathematis, College of Humanities and Sciences, Nihon University Setagaya, Tokyo 156-8550, Japan

E-mail address: watanabe@math.chs.nihon-u.ac.jp

