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Introduction

Inspired by the talk of Kyoji Saito at the Toyama Conference, Aug. 2007, I tried
the classification of 2-dimensional graded normal hypersurfaces with a(R) = 1 using
Demazure’s construction of normal graded rings. Since the classificaion is so simple
and nearly automatic, I want to introduce it.

Although this classification is “known” in the literature (cf. [S], [P1]), it seems
that the systematic method of classification is not known. So, I think this is worth-
while to be published in some form.

Also, I present here the classification of normal two-dimensional hypersurfaces
with a(R) = 2 and normal graded complete intersections with a(R) = 1 and
Proj (R) ∼= P1.

1. Preliminaries

Let R = k[u, v, w]/(f) be a 2-dimensional graded normal hypersurface, where k
is an algebraically closed field of any characteristic. We put X = Proj (R). Since
dimR = 2 and R is normal, X is a smooth curve. Then by the construction of
Zariski and Demazure ([1], [5]), there is an ample Q-Cartier divisor D (that is, ND
is an ample divisor on X for some positive integer N), such that

R = R(X, D) = ⊕n≥0H
0(X, OX(nD)).T n ⊂ k(X)[T ],

where T is a variable over k(X) and

H0(X, OX(nD)) = {f ∈ k(X) | divX(f) + nD ≥ 0} ∪ {0}.
Now, let us begin the classification. In the following, X is a smooth curve of genus

g and D is a fractional divisor on X such that ND is an ample integral (Cartier)
divisor for some N > 0.

We denote

D = D0 +
r∑

i=1

pi

qi
Pi (∀i, (pi, qi) = 1),

where D0 is an integral divisor; a divisor with integer coefficients. In this case, we
denote

D′ =

r∑

i=1

qi − 1

qi
Pi.

At the same time, by our assumption R ∼= k[u, v, w]/(f). If deg(u, v, w; f) =
(a, b, c; h), then by [2],

a(R) = h − (a + b + c).



We always assume deg(u, v, w; f) = (a, b, c; h) and also that a ≤ b ≤ c.

Proposition 1.1. (Fundamental formulas) Assume that R = R(X, D)
∼= k[u, v, w]/(f) with deg(u, v, w; f) = (a, b, c; h) and a(R) = h − (a + b + c) = 1.
Then we have the following equalities.

(1) [W] Since R is Gorenstein with a(R) = 1, we have

D ∼ KX + D′ = KX +
r∑

i=1

qi − 1

qi
Pi,

where, in general, D1 ∼ D2 means that D1 − D2 = divX(f) for some f ∈ k(X).
(2) [Tomari’s formula] If P (R, t) =

∑
n≥0 dimRntn,

lim
t→1

(1 − t)2P (R, t) = degD.

(3) Since P (R, t) =
1 − th

(1 − ta)(1 − tb)(1 − tc)
, we have

degD =
h

abc
=

1

abc
+

1

ab
+

1

ac
+

1

bc
.

Note that the latter expression is a decreasing function of a, b, c.

2. The classification of the hypersurfaces with a(R) = 1.

Henceforce, we put D = KX +
∑r

i=1

qi − 1

qi

Pi. We always use the letter r in

this meaning. From 1.1 (3), the maximal value of degD is taken when a = b =
c = 1 and degD = 4 in that case.

Case A. The case g > 0.

Assume that g ≥ 1. Since deg(D) ≤ 4, and degD ≥ degKX = 2g − 2, g ≤ 3 and
if g = 3, D = KX . We list the cases by giving the form of D and (a, b, c; h). We can
easily deduce the general form of the equation f from this data. Also, if f with the
given weight has an isolated singularity, then k[u, v, w]/(f) ∼= R(X, D), where D is
a divisor of given form.

(A-1) g = 3, D = KX ; (1, 1, 1; 4).

Next, consider the case g = 2. Note that dimR1 = dimH0(KX) = g = 2, we have

a = b = 1 and degD = 1 +
3

c
≤ 5

2
(c ≥ 2). Since, either degD = 2, D = KX or

degD ≥ 5

2
, we have 2 cases.

(A-2) g = 2, D = KX ; (1, 1, 3; 6).

(A-3) g = 2, D = KX +
1

2
P ; (1, 1, 2; 5).



Next, assume g = 1. In this case, a = 1, 2 ≤ b ≤ c and the maximal value

of degD is
3

2
. Since on the other hand, degD ≥ r

2
and thus r ≤ 3 and if r = 3,

D =
1

2
(P1 + P2 + P3).

(A-4) g = 1, D =
1

2
(P1 + P2 + P3); (1, 2, 2; 6).

Also, since dimR2 = r, if r = 2, then a = 1, b = 2, c ≥ 3, deg(D) ≤ 7

6
.

(A-5) g = 1, D =
1

2
(P1 + P2); (1, 2, 4; 8).

(A-6) g = 1, D =
1

2
P1 +

2

3
P2; (1, 2, 3; 7).

If g = 1 and D =
q − 1

q
P , we have q − 1 new generators in degrees 1, 3, . . . , q.

Hence q ≤ 4.

a = 1, 3 ≤ b, c and degD ≤ 8

9
.

(A-7) g = 1, D =
1

2
P ; (1, 4, 6; 12).

(A-8) g = 1, D =
2

3
P ; (1, 3, 5; 10).

(A-9) g = 1, D =
3

4
P ; (1, 3, 4; 9).

We have 9 types when g ≥ 1.

Case B. The case g = 0 and r ≥ 4.

In the following, we always assume g = 0. Since deg(KX) = −2 and degD >
0, we have r ≥ 3. On the other hand, since R1 = H0(KX) = 0, a ≥ 2 and

degD ≤ 7

8
< 1. Since degD ≥ −2 + r/2, we have r ≤ 5.

In this subsection, we treat the cases where r = 4, 5.

Now, since deg[2D] = r − 4, dimR2 = 2, 1, respectively, if r = 5, 4.

Thus if r = 5, then a = b = 2 and c ≥ 3. Hence degD ≤ 2

3
. Since 3.

1

2
+2.

2

3
− 2 =

5

6
>

2

3
, the only possible cases for (q1, . . . , q5) are (2, 2, 2, 2, 2) and (2, 2, 2, 2, 3).

(B-1) D = KX +
1

2
(P1 + P2 + . . . + P5); (2, 2, 5; 10).

(B-2) D = KX +
1

2
(P1 + P2 + P3 + P4) +

2

3
P5; (2, 2, 3; 8).



Henceforce we assume r = 4 and express D by (q1, q2, q3, q4) and we always

assume q1 ≤ q2 ≤ q3 ≤ q4. In this case, a = 2 and 3 ≤ b ≤ c. Hence degD ≤ 1

2
.

Since 4.
2

3
− 2 >

1

2
, q1 = 2 and q4 ≥ 3.

Let s be the number of qi > 2 (1 ≤ s ≤ 3). Then since deg[3D] = −6 + 8 − s,
dimR3 = 0, 1, 2 when s = 1, 2, 3, respectively.

If s = 3, dimR2 + dimR3 = 3 and we must have (a, b, c; h) = (2, 3, 3; 9).

(B-3) D = KX +
1

2
P1 +

2

3
(P2 + P3 + P4); (2, 3, 3; 9).

If s = 2, a = 2, b = 3 and c ≥ 4 and degD =
1

6
+

1

c
≤ 5

12
. Also, since

−2 + (
1

2
+

1

2
+

2

3
+

3

4
=

5

12
, we have 2 types.

(B-4) D = KX +
1

2
(P1 + P2) +

2

3
(P3 + P4); (2, 3, 6; 12).

(B-5) D = KX +
1

2
(P1 + P2) +

2

3
P3 +

3

4
P4; (2, 3, 4; 10).

Now we trat the case (2, 2, 2, q), q ≥ 3. In this case, R3 = 0 and dimR4 = 1 or 2
according to q = 3 or q ≥ 4. In the latter case, dimR5 = 0 or 1 according to q = 4
or q ≥ 5. Hence, if q ≥ 5, we have already 3 generators of R.

(B-6) D = KX +
1

2
(P1 + P2 + P3) +

4

5
P4; (2, 4, 5; 12).

(B-7) D = KX +
1

2
(P1 + P2 + P3) +

3

4
P4; (2, 4, 7; 14).

(B-8) D = KX +
1

2
(P1 + P2 + P3) +

2

3
P4; (2, 6, 9; 18).

We have 8 types in this case.

Case C. The case g = 0 and r = 3.

We have to determine (q1, q2, q3). In this case, R1 = R2 = 0 and dimR3 = 1 or 0
according to q1 = 2 or q1 ≥ 3.

Case 1. q1 ≥ 3.

In this case, a = 3 and 4 ≤ b ≤ c. Hence degD ≤ 1

4
. Hence either q1 = 3 or

q1 = q2 = q3 = 4.

(C-1) D = KX +
3

4
(P1 + P2 + P3); (3, 4, 4; 12).

Henceforce we assume q1 = 3.
R4 	= 0 if and only if q2 ≥ 4. In this case, a = 3, b = 4 and c ≥ 5. Hence

degD ≤ 13

60
=

2

3
+

3

4
+

4

5
− 2. Hence we have only 2 possibilities;

(C-2) D = KX +
2

3
P1 +

3

4
P2 +

4

5
P3; (3, 4, 5; 13).



(C-3) D = KX +
2

3
P1 +

3

4
(P2 + P3); (3, 4, 8; 16).

Next, assume q1 = q2 = 3. Hence degD =
q3 − 1

q3
− 2

3
. On the other hand, since

R4 = 0, a = 3, b ≥ 5 and c ≥ 6 and degD ≤ 1

6
. This implies q3 ≤ 6.

(C-4) D = KX +
2

3
(P1 + P2) +

5

6
P3; (3, 5, 6; 15).

(C-5) D = KX +
2

3
(P1 + P2) +

4

5
P3; (3, 5, 9; 18).

(C-6) D = KX +
2

3
(P1 + P2) +

3

4
P3; (3, 8, 12; 24).

This completes the case q1 = 3.

Case 2. q1 = 2.

In this case, a ≥ 4 and R4 	= 0 if and only if q2 ≥ 4.

First, we consider the case q1 = 2 and q2 = 3 (q3 ≥ 7).
In this case, deg[4D] = −1 = deg[5D] = deg[7D], deg[6D] = 0. Hence a = 6 and

b ≥ 8. Hence degD ≤ 1

18
=

8

9
− 5

6
. This shows that 7 ≤ q3 ≤ 9 and actually these

cases gives the hypersurfaces.

(C-7) D = KX +
1

2
P1 +

2

3
P2 +

6

7
P3; (6, 14, 21; 42).

(C-8) D = KX +
1

2
P1 +

2

3
P2 +

7

8
P3; (6, 8, 15; 30).

(C-9) D = KX +
1

2
P1 +

2

3
P2 +

8

9
P3; (6, 8, 9; 24).

Next, we consider the case q1 = 2 and q2 ≥ 4.

In this case, deg[4D] = 0 and a = 4, b ≥ 5, c ≥ 6. Hence degD ≤ 2

15
=

(
1

2
+

4

5
+

5

6
)− 2. Hence q2 ≤ 5 and if q2 = 5, the possibility is the following 2 cases.

(C-10) D = KX +
1

2
P1 +

4

5
P2 +

5

6
P3; (4, 5, 6; 16).

(C-11) D = KX +
1

2
P1 +

4

5
(P2 + P3); (4, 5, 10; 20).

The remaining case is q1 = 2, q2 = 4 (q3 ≥ 5).
Since dimR4 = 1 and R5 = 0 and hence a = 4, b ≥ 6, c ≥ 7 and degD =

q3 − 1

q3
− 3

4
≤ 3

28
. Hence 5 ≤ q3 ≤ 7 and actually these cases give hypersurfaces.

This finishes the classification !

(C-12) D = KX +
1

2
P1 +

3

4
P2 +

4

5
P3; (4, 10, 15; 30).

(C-13) D = KX +
1

2
P1 +

3

4
P2 +

5

6
P3; (4, 6, 11; 22).

(C-14) D = KX +
1

2
P1 +

3

4
P2 +

6

7
P3; (4, 6, 7; 18).



3. The classification of hypersurfaces with a(R) = 2.

In this section, we classify normal graded hypersurfaces of dimension 2 with
a(R) = 2.

We may assume that R = R(X, D) ∼= k[u, v, w]/(f) with

deg(u, v, w; f) = (a, b, c; h); h = a + b + c + 2.

We always assume (a, b, c) = 1. Since R is Gorenstein with a(R) = 2, 2D is
linearly equivalent to KX + D′. Hence we may assume that

D = E +

r∑

i=1

qi − 1

2qi
Pi,

where 2E ∼ KX and every qi is odd.

Since degD =
h

abc
=

a + b + c + 2

abc
≤ 5, 2g− 2 ≤ 2degD ≤ 10 and we have g ≤ 6.

First, we divide the cases according to (1) a ≥ 2, (2) a = 1, b ≥ 2, or (3) a = b = 1.

Case 1. a ≥ 2.

This is equivalent to say that R1 = H0(X,OX(D)) = 0. If this is the case, we
have

degD ≤ 9

2 · 2 · 3 =
3

4
< 1.

Since degD ≥ g − 1, g = 0 or 1 in this case.
For a while, we assume that g = 0.
Now, we can write

D = −Q +

r∑

i=1

qi − 1

2qi
Pi.

Hence R1 = R2 = 0 and dimR3 = r − 2 since
qi − 1

2qi
≥ 1

3
for every qi. Hence

a = 3 and degD ≤ 12

3 · 3 · 4 =
1

3
. This implies that r ≤ 4 and if r = 4, then

D = −Q +
∑4

i=1

1

3
Pi.

(2-1) g = 0, D = −Q +
1

3
(P1 + P2 + P3 + P4), (3, 3, 4; 12).

Now, we assume r = 3 and q1 ≤ q2 ≤ q3. Then since dimR3 = 1, we have a = 3
and b ≥ 5. Also, dimR4 = 0 and dimR5 = 2 (resp. 1, resp. 0) if q3 ≥ 5 (resp.
q1 = 3, q2 ≥ 5, resp. q2 = 3).

If q1 ≥ 5, degD ≤ 15

3 · 5 · 5 =
1

5
. Hence we must have D = −Q +

2

5
(P1 + P2 + P3).

(2-2) g = 0, D = −Q +
2

5
(P1 + P2 + P3), (3, 5, 5; 15).



Next, consider the case q1 = 3 and q2 ≥ 5. In this case, a = 3, b = 5 and c ≥ 7

and then degD ≤ 17

3 · 5 · 7 =
1

3
+

2

5
+

3

7
− 1. Hence we are restricted to the following

2 cases.

(2-3) g = 0, D = −Q +
1

3
P1 +

2

5
P2 +

3

7
P3, (3, 5, 7; 17).

Actually, if we put D = −2

3
(∞) +

2

5
(0) +

3

7
(−1), then R = k[F, G, H ] with

F =
1

x(x + 1)
T 3, G =

1

x2(x + 1)2
T 5, H =

1

x2(x + 1)3
T 7 with the relation

F 4G = FH2 + G2H.

Hence R ∼= k[X, Y, Z]/(XZ2 + Y 2Z − X4Y ).

(2-4) g = 0, D = −Q +
1

3
P1 +

2

5
(P2 + P3), (3, 5, 10; 20).

If q2 = 3, then a = 3 and b ≥ 7. Hence degD ≤ 21

3 · 7 · 9 = 2
1

3
+

4

9
− 1. Hence in

this case, q3 = 5, 7 or 9.

(2-5) g = 0, D = −Q +
1

3
(P1 + P2) +

4

9
P3, (3, 7, 9; 21).

(2-6) g = 0, D = −Q +
1

3
(P1 + P2) +

3

7
P3, (3, 7, 15; 30).

(2-7) g = 0, D = −Q +
1

3
(P1 + P2) +

2

5
P3, (3, 10, 15; 30).

Now we have finished the case a ≥ 2 and g = 0. Next, we treat the case a ≥ 2
and g = 1. In this case, we put

D = E +
r∑

i=1

qi − 1

2qi
Pi,

where E ∈ Div(X) with E 	= 0 and 2E ∼ 0. Since [2D] = 0 and deg[3D] = r > 0,

we have a = 2 and b = 3. Hence degD ≤ 10

2 · 3 · 3 < 1 and actually, we have r = 1

or 2.

If r = 2, then deg[4D] = 2 and we must have (a, b, c) = (2, 3, 4) and degD =
11

24
.

But since
q1 − 1

2q1

+
q2 − 1

2q2

=
11

24
is impossible, this case does not occur. Hence we

must have r = 1.
Since a = 2, b = 3, c = 4 is impossible as we have seen before, we must have

D = E +
q − 1

2q
P with E + P ≥ 0 and degD ≤ 12

2 · 3 · 5. We have 2 possibilities;

D = E +
2

5
P and D = E +

1

3
P . But the in latter case, we must have a = 2, b =

3, c = 9, which contradicts the fact degD =
1

3
.



Hence we are reduced to the case.

(2-8) g = 1, D = E +
2

5
P with 2E ∼ 0 and E 	= 0, (2, 3, 5; 12).

This finishes the case a ≥ 2.

Case 2. a = 1 and b ≥ 2.

In this case, degD ≤ 7

1 · 2 · 2 < 2. Hence we have g = 1 or 2 in this case.

Moreover, if g = 1, since [2D] = 0, we have b ≥ 3 and degD ≤ 9

1 · 3 · 3 ≤ 1.

First, we assume g = 1 and D =
∑r

i=1

qi − 1

2qi
Pi. Since [2D] = 0 in this case,

b ≥ 3 and we have degD ≤ 9

1 · 3 · 3 = 1. Hence r ≤ 3 in this case and if r = 3,

D =
1

3
(P1 + P2 + P3).

(2-9) g = 1, D =
1

3
(P1 + P2 + P3), (1, 3, 3; 9).

Next, we assume r = 2. Then b = 3 and c ≥ 5. We have degD ≤ 11

1 · 3 · 5 =
1

3
+

2

5
.

Hence we have 2 possibilities;

(2-10) g = 1, D =
1

3
P1 +

2

5
P2, (1, 3, 5; 11).

There is a linear relation between T 11, GT 8, HT 6, G2T 5, GHT 3, G3T 2, H2T, G2H ,
where degT = 1, degG = 3 and degH = 5.

(2-11) g = 1, D =
1

3
(P1 + P2), (1, 3, 6; 12).

Next, we assume D =
q − 1

2q
P . In this case, b ≥ 5 and degD ≤ 15

1 · 5 · 7 =
3

7
.

Hence we have 3 possibilities; q = 3, 5, 7.

(2-12) g = 1, D =
3

7
P, (1, 5, 7; 15).

(2-13) g = 1, D =
2

5
P, (1, 5, 8; 16).

(2-14) g = 1, D =
1

3
P, (1, 6, 9; 18).

Next, we treat the case g = 2, a = 1, b ≥ 2 and D = E +
∑r

i=1

qi − 1

2qi
Pi, with

2E ∼ KX . Since [2D] ∼ KX in this case, we have a = 1, b = 2 and c ≥ 3. Thus we

have degD ≤ 8

1 · 2 · 3 = 1 +
1

3
. Hence r ≤ 1 and if r = 1, then D = D = E +

1

3
P .

(2-15) g = 2, D = E with 2E ∼ KX , (1, 2, 5; 10).



(2-16) g = 2, D =
1

3
P, (1, 2, 3; 8).

This finishes the case a = 1, b ≥ 2.

Case 3. a = b = 1.

In this case, degD =
c + 4

c
. Since g ≥ 3 in this case, degD ≥ 2 and we have

c ≤ 4.

(2-17) g = 6, D = E with 2E ∼ KX , (1, 1, 1; 5).

(2-18) g = 5, D = E with 2E ∼ KX , (1, 1, 2; 6).

(2-19) g = 3, D = E + 1
3
P with 2E ∼ KX , (1, 1, 3; 7).

(2-20) g = 3, D = E with 2E ∼ KX , (1, 1, 4; 8).

4. Complete intersections with a(R) = 1.

In my talk at the conference, I talked about classification of normal graded com-
plete intersections of dimension 2 with a(R) = 1. Until now, I can not find a
satisfactory way to classify them. Here, I will show the results when the genus of
the curve is 0.

Proposition 4.1. Let R = ⊕n≥0Rn be a normal graded complete intersection 0f
dimension 2 with R0 = k, a field, a(R) = 1 and R1 = 0. Then the embedded
dimension of R is at most 4.

This follows from the fact mH1(X,OX) = 0, where m is the graded maximal ideal
of R and X → Spec (R) is a resolution of singularities of R. By the Briançon-Skoda
type argument, we can assert that m3 ⊂ J , where J is a minimal reduction of m.
Then by the argument as in [NW], §2, we can deduce that the embedded dimension
of R is at most 4. Conversely, if R is Gorenstein with the embedded dimension 4,
then R is a complete intersection by the famous result of J.-P. Serre.

Until now, I can not find a satisfactory method of classification for this case. Actu-
ally, what I do is only to restrict the embedding dimension. So, I list only the results
in this case. We list the divisor D on X = P1 with R(X, D) ∼= k[u, v, w, z]/(f, g).
We also put deg(u, v, w, z; f, g) = (a, b, c, d; g, h) with g + h = a + b + c + d + 1 with
a ≤ b ≤ c ≤ d and g ≤ h in the following table.

(3-1) D = KX +
1

2
(P1 + . . . + P6), (2, 2, 2, 3; 4, 6).

(3-2) D = KX +
1

2
(P1 + . . . + P4) +

3

4
P5, (2, 2, 3, 4; 6, 6).

(3-3) D = KX +
1

2
(P1 + P2 + P3) +

2

3
(P4 + P5), (2, 2, 3, 3; 5, 6).

(3-4) D = KX +
2

3
(P1 + . . . + P4), (2, 3, 3, 3; 6, 6).



(3-4) D = KX +
2

3
(P1 + . . . + P4), (2, 3, 3, 3; 6, 6).

(3-5) D = KX +
1

2
P1 +

2

3
(P2 + P3) +

3

4
P4, (2, 3, 3, 4; 6, 7).

(3-5) D = KX +
1

2
P1 +

2

3
(P2 + P3) +

3

4
P4, (2, 3, 3, 4; 6, 7).

(3-6) D = KX +
1

2
(P1 + P2) +

3

4
(P3 + P4), (2, 3, 4, 4; 6, 8).

(3-7) D = KX +
1

2
(P1 + P2) +

2

3
P3 +

4

5
P4, (2, 3, 4, 5; 7, 8).

(3-8) D = KX +
1

2
(P1 + P2 + P3) +

5

6
P4, (2, 4, 5, 6; 8, 10).

(3-9) D = KX +
1

2
(P1 + P2 + P3) +

5

6
P4, (2, 4, 5, 6; 8, 10).

(3-10) D = KX +
3

4
(P1 + P2) +

4

5
P3, (3, 4, 4, 5; 8, 9).

(3-11) D = KX +
2

3
P1 +

4

5
(P2 + P3), (3, 4, 5, 5; 8, 10).

(3-12) D = KX +
2

3
P1 +

3

4
P2 +

5

6
P3, (3, 4, 5, 6; 9, 10).

(3-13) D = KX +
2

3
(P1 + P2) +

6

7
P3, (3, 5, 6, 7; 10, 12).

(3-14) D = KX +
1

2
P1 +

5

6
(P2 + P3), (4, 5, 6, 6; 10, 12).

(3-15) D = KX +
1

2
P1 +

4

5
P2 +

6

7
P3, (4, 5, 6, 7; 11, 12).

(3-16) D = KX +
1

2
P1 +

3

4
P2 +

7

8
P3, (4, 6, 7, 8; 12, 14).

(3-17) D = KX +
1

2
P1 +

2

3
P2 +

9

10
P3, (6, 8, 9, 10; 16, 18).
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