CLASSIFICATION OF 2-DIMENSIONAL GRADED NORMAL HYPERSURFACES WITH a(R) = 1.

KEI-ICHI WATANABE (日本大学・文理学部・数学科)

INTRODUCTION

Inspired by the talk of Kyoji Saito at the Toyama Conference, Aug. 2007, I tried the classification of 2-dimensional graded normal hypersurfaces with a(R) = 1 using Demazure's construction of normal graded rings. Since the classification is so simple and nearly automatic, I want to introduce it.

Although this classification is "known" in the literature (cf. [S], [P1]), it seems that the systematic method of classification is not known. So, I think this is worth-while to be published in some form.

Also, I present here the classification of normal two-dimensional hypersurfaces with a(R) = 2 and normal graded complete intersections with a(R) = 1 and Proj $(R) \cong \mathbb{P}^1$.

1. Preliminaries

Let R = k[u, v, w]/(f) be a 2-dimensional graded normal hypersurface, where k is an algebraically closed field of any characteristic. We put X = Proj(R). Since $\dim R = 2$ and R is normal, X is a smooth curve. Then by the construction of Zariski and Demazure ([1], [5]), there is an ample Q-Cartier divisor D (that is, ND is an ample divisor on X for some positive integer N), such that

$$R = R(X, D) = \bigoplus_{n>0} H^0(X, O_X(nD)) \cdot T^n \subset k(X)[T],$$

where T is a variable over k(X) and

$$H^{0}(X, O_{X}(nD)) = \{ f \in k(X) \mid \operatorname{div}_{X}(f) + nD \ge 0 \} \cup \{ 0 \}.$$

Now, let us begin the classification. In the following, X is a smooth curve of genus g and D is a fractional divisor on X such that ND is an ample integral (Cartier) divisor for some N > 0.

We denote

$$D = D_0 + \sum_{i=1}^r \frac{p_i}{q_i} P_i \quad (\forall i, \ (p_i, q_i) = 1),$$

where D_0 is an integral divisor; a divisor with integer coefficients. In this case, we denote

$$D' = \sum_{i=1}^{r} \frac{q_i - 1}{q_i} P_i.$$

At the same time, by our assumption $R \cong k[u, v, w]/(f)$. If deg(u, v, w; f) = (a, b, c; h), then by [2],

$$a(R) = h - (a + b + c).$$

We always assume $\deg(u, v, w; f) = (a, b, c; h)$ and also that $a \leq b \leq c$.

Proposition 1.1. (Fundamental formulas) Assume that R = R(X, D) $\cong k[u, v, w]/(f)$ with $\deg(u, v, w; f) = (a, b, c; h)$ and a(R) = h - (a + b + c) = 1. Then we have the following equalities.

(1) [W] Since R is Gorenstein with a(R) = 1, we have

$$D \sim K_X + D' = K_X + \sum_{i=1}^r \frac{q_i - 1}{q_i} P_i$$

where, in general, $D_1 \sim D_2$ means that $D_1 - D_2 = \operatorname{div}_X(f)$ for some $f \in k(X)$. (2) [Tomari's formula] If $P(R, t) = \sum_{n>0} \operatorname{dim} R_n t^n$,

$$\lim_{t \to 1} (1 - t)^2 P(R, t) = \deg D.$$

(3) Since
$$P(R,t) = \frac{1-t^h}{(1-t^a)(1-t^b)(1-t^c)}$$
, we have

$$\deg D = \frac{h}{abc} = \frac{1}{abc} + \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc}.$$

Note that the latter expression is a decreasing function of a, b, c.

2. The classification of the hypersurfaces with a(R) = 1.

Henceforce, we put $D = K_X + \sum_{i=1}^r \frac{q_i - 1}{q_i} P_i$. We always use the letter r in this meaning. From 1.1 (3), the maximal value of degD is taken when a = b = c = 1 and degD = 4 in that case.

Case A. The case g > 0.

Assume that $g \ge 1$. Since $\deg(D) \le 4$, and $\deg D \ge \deg K_X = 2g - 2$, $g \le 3$ and if g = 3, $D = K_X$. We list the cases by giving the form of D and (a, b, c; h). We can easily deduce the general form of the equation f from this data. Also, if f with the given weight has an isolated singularity, then $k[u, v, w]/(f) \cong R(X, D)$, where D is a divisor of given form.

(A-1) $g = 3, D = K_X;$ (1, 1, 1; 4).

Next, consider the case g = 2. Note that $\dim R_1 = \dim H^0(K_X) = g = 2$, we have a = b = 1 and $\deg D = 1 + \frac{3}{c} \leq \frac{5}{2}$ $(c \geq 2)$. Since, either $\deg D = 2, D = K_X$ or $\deg D \geq \frac{5}{2}$, we have 2 cases.

(A-2)
$$g = 2, D = K_X;$$
 (1, 1, 3; 6).
(A-3) $g = 2, D = K_X + \frac{1}{2}P;$ (1, 1, 2; 5)

Next, assume g = 1. In this case, a = 1, $2 \le b \le c$ and the maximal value of deg D is $\frac{3}{2}$. Since on the other hand, deg $D \ge \frac{r}{2}$ and thus $r \le 3$ and if r = 3, $D = \frac{1}{2}(P_1 + P_2 + P_3)$.

(A-4)
$$g = 1, D = \frac{1}{2}(P_1 + P_2 + P_3); (1, 2, 2; 6).$$

Also, since dim $R_2 = r$, if r = 2, then $a = 1, b = 2, c \ge 3$, deg $(D) \le \frac{7}{6}$.

(A-5)
$$g = 1, D = \frac{1}{2}(P_1 + P_2);$$
 (1, 2, 4; 8).
(A-6) $g = 1, D = \frac{1}{2}P_1 + \frac{2}{3}P_2;$ (1, 2, 3; 7).

If g = 1 and $D = \frac{q-1}{q}P$, we have q-1 new generators in degrees $1, 3, \ldots, q$. Hence $q \leq 4$.

$$a = 1, 3 \le b, c \text{ and } \deg D \le \frac{8}{9}.$$

(A-7)
$$g = 1, D = \frac{1}{2}P;$$
 (1,4,6;12)

(A-8)
$$g = 1, D = \frac{1}{3}P;$$
 (1,3,5;10)
(A-9) $g = 1, D = \frac{3}{4}P;$ (1,3,4;9).

(A-9)
$$g = 1, D = \frac{1}{4}P;$$
 (1,3,4;

We have 9 types when $g \ge 1$.

Case B. The case g = 0 and $r \ge 4$.

In the following, we always assume g = 0. Since $\deg(K_X) = -2$ and $\deg D > 0$, we have $r \ge 3$. On the other hand, since $R_1 = H^0(K_X) = 0$, $a \ge 2$ and $\deg D \le \frac{7}{8} < 1$. Since $\deg D \ge -2 + r/2$, we have $r \le 5$.

In this subsection, we treat the cases where r = 4, 5.

Now, since deg[2D] = r - 4, dim $R_2 = 2, 1$, respectively, if r = 5, 4. Thus if r = 5, then a = b = 2 and $c \ge 3$. Hence deg $D \le \frac{2}{3}$. Since $3 \cdot \frac{1}{2} + 2 \cdot \frac{2}{3} - 2 = \frac{5}{6} > \frac{2}{3}$, the only possible cases for (q_1, \ldots, q_5) are (2, 2, 2, 2, 2) and (2, 2, 2, 2, 3). (B-1) $D = K_X + \frac{1}{2}(P_1 + P_2 + \ldots + P_5);$ (2, 2, 5; 10). (B-2) $D = K_X + \frac{1}{2}(P_1 + P_2 + P_3 + P_4) + \frac{2}{3}P_5;$ (2, 2, 3; 8). Henceforce we assume r = 4 and express D by (q_1, q_2, q_3, q_4) and we always assume $q_1 \leq q_2 \leq q_3 \leq q_4$. In this case, a = 2 and $3 \leq b \leq c$. Hence deg $D \leq \frac{1}{2}$. Since $4 \cdot \frac{2}{3} - 2 > \frac{1}{2}$, $q_1 = 2$ and $q_4 \geq 3$.

Let s be the number of $q_i > 2$ $(1 \le s \le 3)$. Then since deg[3D] = -6 + 8 - s, dim $R_3 = 0, 1, 2$ when s = 1, 2, 3, respectively.

If s = 3, dim R_2 + dim $R_3 = 3$ and we must have (a, b, c; h) = (2, 3, 3; 9).

(B-3)
$$D = K_X + \frac{1}{2}P_1 + \frac{2}{3}(P_2 + P_3 + P_4);$$
 (2, 3, 3; 9).

If s = 2, a = 2, b = 3 and $c \ge 4$ and $\deg D = \frac{1}{6} + \frac{1}{c} \le \frac{5}{12}$. Also, since $-2 + (\frac{1}{2} + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} = \frac{5}{12}$, we have 2 types. (B-4) $D = K_X + \frac{1}{2}(P_1 + P_2) + \frac{2}{3}(P_3 + P_4)$; (2,3,6;12). (B-5) $D = K_X + \frac{1}{2}(P_1 + P_2) + \frac{2}{3}P_3 + \frac{3}{4}P_4$; (2,3,4;10).

Now we trat the case (2, 2, 2, q), $q \ge 3$. In this case, $R_3 = 0$ and dim $R_4 = 1$ or 2 according to q = 3 or $q \ge 4$. In the latter case, dim $R_5 = 0$ or 1 according to q = 4 or $q \ge 5$. Hence, if $q \ge 5$, we have already 3 generators of R.

(B-6)
$$D = K_X + \frac{1}{2}(P_1 + P_2 + P_3) + \frac{4}{5}P_4;$$
 (2,4,5;12).
(B-7) $D = K_X + \frac{1}{2}(P_1 + P_2 + P_3) + \frac{3}{4}P_4;$ (2,4,7;14).
(B-8) $D = K_X + \frac{1}{2}(P_1 + P_2 + P_3) + \frac{2}{3}P_4;$ (2,6,9;18).

We have 8 types in this case.

Case C. The case g = 0 and r = 3.

We have to determine (q_1, q_2, q_3) . In this case, $R_1 = R_2 = 0$ and dim $R_3 = 1$ or 0 according to $q_1 = 2$ or $q_1 \ge 3$.

Case 1. $q_1 \ge 3$.

In this case, a = 3 and $4 \le b \le c$. Hence $\deg D \le \frac{1}{4}$. Hence either $q_1 = 3$ or $q_1 = q_2 = q_3 = 4$.

(C-1)
$$D = K_X + \frac{3}{4}(P_1 + P_2 + P_3);$$
 (3, 4, 4; 12).

Henceforce we assume $q_1 = 3$.

 $R_4 \neq 0$ if and only if $q_2 \geq 4$. In this case, a = 3, b = 4 and $c \geq 5$. Hence $\deg D \leq \frac{13}{60} = \frac{2}{3} + \frac{3}{4} + \frac{4}{5} - 2$. Hence we have only 2 possibilities; (C-2) $D = K_X + \frac{2}{3}P_1 + \frac{3}{4}P_2 + \frac{4}{5}P_3$; (3,4,5;13).

(C-3)
$$D = K_X + \frac{2}{3}P_1 + \frac{3}{4}(P_2 + P_3);$$
 (3, 4, 8; 16).

Next, assume $q_1 = q_2 = 3$. Hence $\deg D = \frac{q_3 - 1}{q_3} - \frac{2}{3}$. On the other hand, since $R_4 = 0, a = 3, b \ge 5$ and $c \ge 6$ and $\deg D \le \frac{1}{6}$. This implies $q_3 \le 6$.

(C-4)
$$D = K_X + \frac{2}{3}(P_1 + P_2) + \frac{5}{6}P_3;$$
 (3, 5, 6; 15).
(C-5) $D = K_X + \frac{2}{3}(P_1 + P_2) + \frac{4}{5}P_3;$ (3, 5, 9; 18).
(C-6) $D = K_X + \frac{2}{3}(P_1 + P_2) + \frac{3}{4}P_3;$ (3, 8, 12; 24).

This completes the case $q_1 = 3$.

Case 2. $q_1 = 2$.

In this case, $a \ge 4$ and $R_4 \ne 0$ if and only if $q_2 \ge 4$.

First, we consider the case $q_1 = 2$ and $q_2 = 3$ ($q_3 \ge 7$). In this case, $\deg[4D] = -1 = \deg[5D] = \deg[7D]$, $\deg[6D] = 0$. Hence a = 6 and $b \ge 8$. Hence $\deg D \le \frac{1}{18} = \frac{8}{9} - \frac{5}{6}$. This shows that $7 \le q_3 \le 9$ and actually these cases gives the hypersurface

(C-7) $D = K_X + \frac{1}{2}P_1 + \frac{2}{3}P_2 + \frac{6}{7}P_3;$ (6, 14, 21; 42). (C-8) $D = K_X + \frac{1}{2}P_1 + \frac{2}{3}P_2 + \frac{7}{8}P_3;$ (6, 8, 15; 30). (C-9) $D = K_X + \frac{1}{2}P_1 + \frac{2}{3}P_2 + \frac{8}{9}P_3;$ (6, 8, 9; 24).

Next, we consider the case $q_1 = 2$ and $q_2 \ge 4$.

In this case, deg[4D] = 0 and $a = 4, b \ge 5, c \ge 6$. Hence deg $D \le \frac{2}{15}$ = $\left(\frac{1}{2} + \frac{4}{5} + \frac{5}{6}\right) - 2$. Hence $q_2 \le 5$ and if $q_2 = 5$, the possibility is the following 2 cases. (0,10) D U 1 1 4 5 D

(C-10)
$$D = K_X + \frac{1}{2}P_1 + \frac{1}{5}P_2 + \frac{1}{6}P_3;$$
 (4, 5, 6; 16).
(C-11) $D = K_X + \frac{1}{2}P_1 + \frac{4}{5}(P_2 + P_3);$ (4, 5, 10; 20).

The remaining case is $q_1 = 2, q_2 = 4 \ (q_3 \ge 5)$. Since dim $R_4 = 1$ and $R_5 = 0$ and hence $a = 4, b \ge 6, c \ge 7$ and deg $D = \frac{q_3 - 1}{q_3} - \frac{3}{4} \le \frac{3}{28}$. Hence $5 \le q_3 \le 7$ and actually these cases give hypersurfaces.

This finishes the classification

- (C-12) $D = K_X + \frac{1}{2}P_1 + \frac{3}{4}P_2 + \frac{4}{5}P_3;$ (4, 10, 15; 30). (C-13) $D = K_X + \frac{1}{2}P_1 + \frac{3}{4}P_2 + \frac{5}{6}P_3;$ (4, 6, 11; 22).

(C-14)
$$D = K_X + \frac{1}{2}P_1 + \frac{3}{4}P_2 + \frac{6}{7}P_3;$$
 (4, 6, 7; 18).

3. The classification of hypersurfaces with a(R) = 2.

In this section, we classify normal graded hypersurfaces of dimension 2 with a(R) = 2.

We may assume that $R = R(X, D) \cong k[u, v, w]/(f)$ with

$$\deg(u, v, w; f) = (a, b, c; h); \quad h = a + b + c + 2.$$

We always assume (a, b, c) = 1. Since R is Gorenstein with a(R) = 2, 2D is linearly equivalent to $K_X + D'$. Hence we may assume that

$$D = E + \sum_{i=1}^{r} \frac{q_i - 1}{2q_i} P_i,$$

where $2E \sim K_X$ and every q_i is odd. Since $\deg D = \frac{h}{abc} = \frac{a+b+c+2}{abc} \le 5$, $2g-2 \le 2\deg D \le 10$ and we have $g \le 6$.

First, we divide the cases according to (1) $a \ge 2$, (2) $a = 1, b \ge 2$, or (3) a = b = 1.

Case 1. $a \geq 2$.

This is equivalent to say that $R_1 = H^0(X, \mathcal{O}_X(D)) = 0$. If this is the case, we have

$$\deg D \le \frac{9}{2 \cdot 2 \cdot 3} = \frac{3}{4} < 1.$$

Since $\deg D \ge g - 1$, g = 0 or 1 in this case.

For a while, we assume that g = 0.

Now, we can write

$$D = -Q + \sum_{i=1}^{r} \frac{q_i - 1}{2q_i} P_i.$$

Hence $R_1 = R_2 = 0$ and dim $R_3 = r - 2$ since $\frac{q_i - 1}{2q_i} \ge \frac{1}{3}$ for every q_i . Hence a = 3 and $\deg D \leq \frac{12}{3 \cdot 3 \cdot 4} = \frac{1}{3}$. This implies that $r \leq 4$ and if r = 4, then $D = -Q + \sum_{i=1}^{4} \frac{1}{3} P_i.$

(2-1)
$$g = 0, D = -Q + \frac{1}{3}(P_1 + P_2 + P_3 + P_4), \quad (3, 3, 4; 12).$$

Now, we assume r = 3 and $q_1 \le q_2 \le q_3$. Then since dim $R_3 = 1$, we have a = 3and $b \ge 5$. Also, dim $R_4 = 0$ and dim $R_5 = 2$ (resp. 1, resp. 0) if $q_3 \ge 5$ (resp. $q_1 = 3, q_2 \ge 5$, resp. $q_2 = 3$).

If
$$q_1 \ge 5$$
, $\deg D \le \frac{15}{3 \cdot 5 \cdot 5} = \frac{1}{5}$. Hence we must have $D = -Q + \frac{2}{5}(P_1 + P_2 + P_3)$.
(2-2) $g = 0, D = -Q + \frac{2}{5}(P_1 + P_2 + P_3), \quad (3, 5, 5; 15).$

Next, consider the case $q_1 = 3$ and $q_2 \ge 5$. In this case, a = 3, b = 5 and $c \ge 7$ and then $\deg D \le \frac{17}{3 \cdot 5 \cdot 7} = \frac{1}{3} + \frac{2}{5} + \frac{3}{7} - 1$. Hence we are restricted to the following 2 cases.

(2-3)
$$g = 0, D = -Q + \frac{1}{3}P_1 + \frac{2}{5}P_2 + \frac{3}{7}P_3, \quad (3, 5, 7; 17).$$

Actually, if we put $D = -\frac{2}{3}(\infty) + \frac{2}{5}(0) + \frac{3}{7}(-1)$, then R = k[F, G, H] with $F = \frac{1}{x(x+1)}T^3, G = \frac{1}{x^2(x+1)^2}T^5, H = \frac{1}{x^2(x+1)^3}T^7$ with the relation $F^4G = FH^2 + G^2H.$

Hence $R \cong k[X, Y, Z] / (XZ^2 + Y^2Z - X^4Y).$

(2-4)
$$g = 0, D = -Q + \frac{1}{3}P_1 + \frac{2}{5}(P_2 + P_3), \quad (3, 5, 10; 20).$$

If $q_2 = 3$, then a = 3 and $b \ge 7$. Hence $\deg D \le \frac{21}{3 \cdot 7 \cdot 9} = 2\frac{1}{3} + \frac{4}{9} - 1$. Hence in this case, $q_3 = 5, 7$ or 9.

(2-5)
$$g = 0, D = -Q + \frac{1}{3}(P_1 + P_2) + \frac{4}{9}P_3, \quad (3, 7, 9; 21).$$

(2-6)
$$g = 0, D = -Q + \frac{1}{3}(P_1 + P_2) + \frac{3}{7}P_3, \quad (3, 7, 15; 30).$$

(2-7)
$$g = 0, D = -Q + \frac{1}{3}(P_1 + P_2) + \frac{2}{5}P_3, \quad (3, 10, 15; 30).$$

Now we have finished the case $a \ge 2$ and g = 0. Next, we treat the case $a \ge 2$ and g = 1. In this case, we put

$$D = E + \sum_{i=1}^{r} \frac{q_i - 1}{2q_i} P_i,$$

where $E \in \text{Div}(X)$ with $E \neq 0$ and $2E \sim 0$. Since [2D] = 0 and deg[3D] = r > 0, we have a = 2 and b = 3. Hence $\text{deg}D \leq \frac{10}{2 \cdot 3 \cdot 3} < 1$ and actually, we have r = 1or 2.

If r = 2, then deg[4D] = 2 and we must have (a, b, c) = (2, 3, 4) and deg $D = \frac{11}{24}$. But since $\frac{q_1 - 1}{2q_1} + \frac{q_2 - 1}{2q_2} = \frac{11}{24}$ is impossible, this case does not occur. Hence we must have r = 1.

Since a = 2, b = 3, c = 4 is impossible as we have seen before, we must have $D = E + \frac{q-1}{2q}P$ with $E + P \ge 0$ and $\deg D \le \frac{12}{2 \cdot 3 \cdot 5}$. We have 2 possibilities; $D = E + \frac{2}{5}P$ and $D = E + \frac{1}{3}P$. But the in latter case, we must have a = 2, b = 3, c = 9, which contradicts the fact $\deg D = \frac{1}{3}$.

Hence we are reduced to the case.

(2-8) $g = 1, D = E + \frac{2}{5}P$ with $2E \sim 0$ and $E \neq 0$, (2, 3, 5; 12). This finishes the case $a \geq 2$.

Case 2. a = 1 and b > 2.

In this case, deg $D \leq \frac{7}{1 \cdot 2 \cdot 2} < 2$. Hence we have g = 1 or 2 in this case. Moreover, if g = 1, since [2D] = 0, we have $b \ge 3$ and $\deg D \le \frac{9}{1 \cdot 3 \cdot 3} \le 1$.

First, we assume g = 1 and $D = \sum_{i=1}^{r} \frac{q_i - 1}{2q_i} P_i$. Since [2D] = 0 in this case, $b \ge 3$ and we have $\deg D \le \frac{9}{1 \cdot 3 \cdot 3} = 1$. Hence $r \le 3$ in this case and if r = 3, $D = \frac{1}{3}(P_1 + P_2 + P_3).$

(2-9)
$$g = 1, D = \frac{1}{3}(P_1 + P_2 + P_3), (1, 3, 3; 9)$$

Next, we assume r = 2. Then b = 3 and $c \ge 5$. We have $\deg D \le \frac{11}{1+3+5} = \frac{1}{3} + \frac{2}{5}$. Hence we have 2 possibilities;

2-10) $g = 1, D = \frac{1}{3}P_1 + \frac{2}{5}P_2, \quad (1, 3, 5; 11).$ There is a linear relation between $T^{11}, GT^8, HT^6, G^2T^5, GHT^3, G^3T^2, H^2T, G^2H,$ (2-10)

where $\deg T = 1$, $\deg G = 3$ and $\deg H = 5$.

(2-11)
$$g = 1, D = \frac{1}{3}(P_1 + P_2), (1, 3, 6; 12).$$

Next, we assume $D = \frac{q-1}{2q}P$. In this case, $b \ge 5$ and $\deg D \le \frac{15}{1\cdot 5\cdot 7} = \frac{3}{7}$. Hence we have 3 possibilities; q = 3, 5, 7.

(2-12) $g = 1, D = \frac{3}{7}P, (1, 5, 7; 15).$

(2-13)
$$g = 1, D = \frac{2}{5}P, (1, 5, 8; 16).$$

(2-14)
$$g = 1, D = \frac{1}{3}P, (1, 6, 9; 18).$$

Next, we treat the case g = 2, $a = 1, b \ge 2$ and $D = E + \sum_{i=1}^{r} \frac{q_i - 1}{2q_i} P_i$, with $2E \sim K_X$. Since $[2D] \sim K_X$ in this case, we have a = 1, b = 2 and $c \geq 3$. Thus we have $\deg D \leq \frac{8}{1 \cdot 2 \cdot 3} = 1 + \frac{1}{3}$. Hence $r \leq 1$ and if r = 1, then $D = D = E + \frac{1}{3}P$. (2-15) g = 2, D = E with $2E \sim K_X$, (1, 2, 5; 10).

(2-16) $g = 2, D = \frac{1}{3}P, (1, 2, 3; 8).$

This finishes the case $a = 1, b \ge 2$.

Case 3. a = b = 1.

In this case, $\deg D = \frac{c+4}{c}$. Since $g \ge 3$ in this case, $\deg D \ge 2$ and we have $c \le 4$.

- (2-17) g = 6, D = E with $2E \sim K_X$, (1, 1, 1; 5).
- (2-18) g = 5, D = E with $2E \sim K_X$, (1, 1, 2; 6).
- (2-19) $g = 3, D = E + \frac{1}{3}P$ with $2E \sim K_X$, (1, 1, 3; 7).
- (2-20) g = 3, D = E with $2E \sim K_X$, (1, 1, 4; 8).

4. Complete intersections with a(R) = 1.

In my talk at the conference, I talked about classification of normal graded complete intersections of dimension 2 with a(R) = 1. Until now, I can not find a satisfactory way to classify them. Here, I will show the results when the genus of the curve is 0.

Proposition 4.1. Let $R = \bigoplus_{n\geq 0} R_n$ be a normal graded complete intersection Of dimension 2 with $R_0 = k$, a field, a(R) = 1 and $R_1 = 0$. Then the embedded dimension of R is at most 4.

This follows from the fact $\mathfrak{m}H^1(X, \mathcal{O}_X) = 0$, where \mathfrak{m} is the graded maximal ideal of R and $X \to \operatorname{Spec}(R)$ is a resolution of singularities of R. By the Briançon-Skoda type argument, we can assert that $\mathfrak{m}^3 \subset J$, where J is a minimal reduction of \mathfrak{m} . Then by the argument as in [NW], §2, we can deduce that the embedded dimension of R is at most 4. Conversely, if R is Gorenstein with the embedded dimension 4, then R is a complete intersection by the famous result of J.-P. Serre.

Until now, I can not find a satisfactory method of classification for this case. Actually, what I do is only to restrict the embedding dimension. So, I list only the results in this case. We list the divisor D on $X = \mathbb{P}^1$ with $R(X, D) \cong k[u, v, w, z]/(f, g)$. We also put deg(u, v, w, z; f, g) = (a, b, c, d; g, h) with g + h = a + b + c + d + 1 with $a \leq b \leq c \leq d$ and $g \leq h$ in the following table.

(3-1)
$$D = K_X + \frac{1}{2}(P_1 + \ldots + P_6), \quad (2, 2, 2, 3; 4, 6).$$

(3-2)
$$D = K_X + \frac{1}{2}(P_1 + \ldots + P_4) + \frac{3}{4}P_5, \quad (2, 2, 3, 4; 6, 6).$$

(3-3)
$$D = K_X + \frac{1}{2}(P_1 + P_2 + P_3) + \frac{2}{3}(P_4 + P_5), \quad (2, 2, 3, 3; 5, 6).$$

(3-4)
$$D = K_X + \frac{2}{3}(P_1 + \ldots + P_4), \quad (2, 3, 3, 3; 6, 6).$$

(3-4)	$D = K_X + \frac{2}{3}(P_1 + \ldots + P_4), (2, 3, 3, 3; 6, 6).$
(3-5)	$D = K_X + \frac{1}{2}P_1 + \frac{2}{3}(P_2 + P_3) + \frac{3}{4}P_4, (2, 3, 3, 4; 6, 7).$
(3-5)	$D = K_X + \frac{1}{2}P_1 + \frac{2}{3}(P_2 + P_3) + \frac{3}{4}P_4, (2, 3, 3, 4; 6, 7).$
(3-6)	$D = K_X + \frac{1}{2}(P_1 + P_2) + \frac{3}{4}(P_3 + P_4), (2, 3, 4, 4; 6, 8).$
(3-7)	$D = K_X + \frac{1}{2}(P_1 + P_2) + \frac{2}{3}P_3 + \frac{4}{5}P_4, (2, 3, 4, 5; 7, 8).$
(3-8)	$D = K_X + \frac{1}{2}(P_1 + P_2 + P_3) + \frac{5}{6}P_4, (2, 4, 5, 6; 8, 10).$
(3-9)	$D = K_X + \frac{1}{2}(P_1 + P_2 + P_3) + \frac{5}{6}P_4, (2, 4, 5, 6; 8, 10).$
(3-10)	$D = K_X + \frac{3}{4}(P_1 + P_2) + \frac{4}{5}P_3, (3, 4, 4, 5; 8, 9).$
(3-11)	$D = K_X + \frac{2}{3}P_1 + \frac{4}{5}(P_2 + P_3), (3, 4, 5, 5; 8, 10).$
(3-12)	$D = K_X + \frac{2}{3}P_1 + \frac{3}{4}P_2 + \frac{5}{6}P_3, (3, 4, 5, 6; 9, 10).$
(3-13)	$D = K_X + \frac{2}{3}(P_1 + P_2) + \frac{6}{7}P_3, (3, 5, 6, 7; 10, 12).$
(3-14)	$D = K_X + \frac{1}{2}P_1 + \frac{5}{6}(P_2 + P_3), (4, 5, 6, 6; 10, 12).$
(3-15)	$D = K_X + \frac{1}{2}P_1 + \frac{4}{5}P_2 + \frac{6}{7}P_3, (4, 5, 6, 7; 11, 12).$
(3-16)	$D = K_X + \frac{1}{2}P_1 + \frac{3}{4}P_2 + \frac{7}{8}P_3, (4, 6, 7, 8; 12, 14).$

(3-17)
$$D = K_X + \frac{1}{2}P_1 + \frac{2}{3}P_2 + \frac{9}{10}P_3, \quad (6, 8, 9, 10; 16, 18).$$

References

- [1] [Dem] Demazure, M.: Anneaux gradués normaux ; in Seminarire Demazure -Giraud -Teissier, 1979. Ecole Polytechnique In:Lê Dũng Tráng(ed.) Introduction a la théorie des singularités II; Méthodes algébriques et géométriques (Travaux En Cours vol.37, pp.35-68) Paris:Hermann 1988
- [2] [GW] Goto, S., Watanabe, K.-i.: On graded rings I. J. Math. Soc. Japan. 30 (1978) 179-213.
- [3] [NW] Nakajima, H., Watanabe, K.-i.: The classification of quotient singularities which are complete intersections, in "Complete Intersections", Lect. Notes in Math. 1092 (1984), 102-120.
- [4] [P1] Pinkham, H.: Singularités exceptionelles, la dualité etrange d'Arnold et les surfaces K3, C.R.Acad.Sc.Paris, 284 (A) (1977), 615-618.
- [5] [P2] Pinkham, H.: Normal surface singularities with C*-action Math. Ann. 227, (1977) 183-193

- [6] [S] Saito, K.: Regular system of weights and associated singularities, In:Suwa,T., Wagreich,Ph.(ed.) Complex analytic singularities. (Adv. Studies in pure Math.8,479-526) Tokyo Amsterdam: Kinokuniya-North-Holland 1986
- [7] [W] Watanabe, K.-i.: Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83,(1981) 203-211

Department of Mathematis, College of Humanities and Sciences, Nihon University Setagaya, Tokyo 156-8550, Japan

E-mail address: watanabe@math.chs.nihon-u.ac.jp