Willmore two-spheres in S^{n+2} via Loop group theory

Peng Wang (with Josef Dorfmeister)

Tongji University
The 10th Pacific Rim Geometric Conference 2011 Osaka-Fukuoka
Background

- \(x : M \rightarrow S^{n+2} \) Willmore surface: critical surface of the Willmore functional

\[
W(M) = \int_M (H^2 - K + 1) dM
\]

- Bryant, R. (1984), \(x : M \rightarrow S^3 \) Willmore,
 1. harmonicity of conformal Gauss map

\[
Gr : M \rightarrow Gr_{3,1}(\mathbb{R}^5_1) = S^4_1,
\]

 2. Duality theorems.
 3. Willmore \(S^2 \) \(\implies \) conformal to minimal surface in \(\mathbb{R}^3 \).
Background

- $x : M \rightarrow S^{n+2}$ Willmore surface: critical surface of the Willmore functional

$$W(M) = \int_M (H^2 - K + 1) dM$$

- Bryant, R. (1984), $x : M \rightarrow S^3$ Willmore,
 1. harmonicity of conformal Gauss map

$$Gr : M \rightarrow Gr_{3,1}(\mathbb{R}^5_1) = S^4_1,$$

 2. Duality theorems.
 3. Willmore $S^2 \implies$ conformal to minimal surface in \mathbb{R}^3.

Peng Wang (with Josef Dorfmeister) Willmore two-spheres in S^{n+2} via Loop group theory
Ejiri (1988) $x : M \rightarrow S^{n+2}$ Willmore:

- harmonicity of conformal Gauss map

\[Gr : M \rightarrow Gr_{3,1}(\mathbb{R}^{n+4}_1) \]

- S-Willmore surface: Willmore surface with a dual surface,
- Classification of S-Willmore S^2 in S^{n+2}.
- All Willmore S^2 in S^4 are S-Willmore.
Ejiri (1988) $x : M \rightarrow S^{n+2}$ Willmore:

- harmonicity of conformal Gauss map

$$Gr : M \rightarrow Gr_{3,1}(\mathbb{R}^{n+4})$$

- S-Willmore surface: Willmore surface with a dual surface,
 - Classification of S-Willmore S^2 in S^{n+2}.
 - All Willmore S^2 in S^4 are S-Willmore.
Ejiri (1988) $x : M \rightarrow S^{n+2}$ Willmore:

- harmonicity of conformal Gauss map

$$Gr : M \rightarrow Gr_{3,1}(\mathbb{R}^{n+4})$$

- S-Willmore surface: Willmore surface with a dual surface,
- Classification of S-Willmore S^2 in S^{n+2}.
- All Willmore S^2 in S^4 are S-Willmore.
Ejiri (1988) $x : M \to S^{n+2}$ Willmore:

- harmonicity of conformal Gauss map

$$Gr : M \to Gr_{3,1}(\mathbb{R}^{n+4}_1)$$

- S-Willmore surface: Willmore surface with a dual surface,

- Classification of S-Willmore S^2 in S^{n+2}.

- All Willmore S^2 in S^4 are S-Willmore.

$$S^2 \setminus \{p_1, \ldots, p_n\} \xrightarrow{\text{Willmore}} S^4$$

π \downarrow

$S^4 \rightarrow R^4$

$(\text{anti-)holo}$ \downarrow

Twistor map

$S^2 \xrightarrow{\text{Willmore}} S^4$

Peng Wang (with Josef Dorfmeister)

Willmore two-spheres in S^{n+2} via Loop group theory

$S^2 \setminus \{p_1, \cdots, p_n\} \xrightarrow{\text{Willmore}} S^4$

$\xrightarrow{\text{minimal}}$

π

\downarrow

R^4

$CP^3 \xrightarrow{(\text{anti-})\text{holo}} S^4$

$\xrightarrow{\text{Twistor map}}$

$S^2 \xrightarrow{\text{Willmore}} S^4$
Questions:

- Are there Willmore two spheres in S^5 or S^6 which are non-S-Willmore?
- Classification of all Willmore S^2 in S^{n+2}.
- How to do with Willmore surfaces by use of the theory on harmonic maps into symmetric spaces?
Questions:

- Are there Willmore two spheres in S^5 or S^6 which are non-S-Willmore?
- Classification of all Willmore S^2 in S^{n+2}.
- How to do with Willmore surfaces by use of the theory on harmonic maps into symmetric spaces?
Questions:

- Are there Willmore two spheres in S^5 or S^6 which are non-S-Willmore?
- Classification of all Willmore S^2 in S^{n+2}.
- How to do with Willmore surfaces by use of the theory on harmonic maps into symmetric spaces?
Uhlenbeck, K. (1989): All harmonic S^2 in $U(n)$. finite uniton.

Burstall, F, Guest, M. (1997): All harmonic S^2 in (compact semisimple Lie group) G. (\Rightarrow) η_{-1} locates in some nilpotent Lie sub-algebra.
Loop group methods

- Uhlenbeck, K. (1989): All harmonic S^2 in $U(n)$. finite uniton.
- Burstall, F, Guest, M. (1997): All harmonic S^2 in (compact semisimple Lie group) G. (\Rightarrow) η_{-1} locates in some nilpotent Lie sub-algebra.
Uhlenbeck, K. (1989): All harmonic S^2 in $U(n)$. finite uniton.

Burstall, F, Guest, M. (1997): All harmonic S^2 in (compact semisimple Lie group) G. (\Rightarrow) η_{-1} locates in some nilpotent Lie sub-algebra.
Our main strategy

- Study Willmore surface by considering the conformal harmonic Gauss map via loop group methods.
- Harmonic map from S^2 into compact Lie group is of finite uniton. For the non-compact case, this property holds too.
- One can describe the conformal harmonic maps of finite uniton explicitly, and as an application, giving all Willmore two-spheres (may have branch points).
Our main strategy

- Study Willmore surface by considering the conformal harmonic Gauss map via loop group methods.
- Harmonic map from S^2 into compact Lie group is of finite uniton. For the non-compact case, this property holds too.
- One can describe the conformal harmonic maps of finite uniton explicitly, and as an application, giving all Willmore two-spheres (may have branch points).
Our main strategy

- Study Willmore surface by considering the conformal harmonic Gauss map via loop group methods.
- Harmonic map from S^2 into compact Lie group is of finite uniton. For the non-compact case, this property holds too.
- One can describe the conformal harmonic maps of finite uniton explicitly, and as an application, giving all Willmore two-spheres (may have branch points).
Basic methods of our work

- Moving frame of Willmore surface in S^{n+2} by Burstall-Pedit-Pinkall.
- DPW methods for harmonic maps in symmetric space, i.e., using Lie-algebra-valued meromorphic 1-form (Normalized potential) to describe harmonic maps.
- Burstall-Guest theory on harmonic map from S^2 into compact Lie group (in term of DPW, the normalized potential is in some nilpotent Lie sub-algebra).
Basic methods of our work

- Moving frame of Willmore surface in S^{n+2} by Burstall-Pedit-Pinkall.
- DPW methods for harmonic maps in symmetric space, i.e., using Lie-algebra-valued meromorphic 1-form (Normalized potential) to describe harmonic maps.
- Burstall-Guest theory on harmonic map from S^2 into compact Lie group (in term of DPW, the normalized potential is in some nilpotent Lie sub-algebra).
Basic methods of our work

- Moving frame of Willmore surface in S^{n+2} by Burstall-Pedit-Pinkall.
- DPW methods for harmonic maps in symmetric space, i.e., using Lie-algebra-valued meromorphic 1-form (Normalized potential) to describe harmonic maps.
- Burstall-Guest theory on harmonic map from S^2 into compact Lie group (in term of DPW, the normalized potential is in some nilpotent Lie sub-algebra).
Main results

- Harmonic maps into compact symmetric space v.s. non compact symmetric spaces.
- From Willmore surface to the conformal Gauss map, and how to go back.
- The finite uniton case: classification of nilpotent normalized potential, and going back to the corresponding Willmore surfaces.
Main results

- Harmonic maps into compact symmetric space v.s. non compact symmetric spaces.
- From Willmore surface to the conformal Gauss map, and how to go back.
- The finite uniton case:
 classification of nilpotent normalized potential, and going back to the corresponding Willmore surfaces.

Peng Wang (with Josef Dorfmeister)
Main results

- Harmonic maps into compact symmetric space v.s. non compact symmetric spaces.
- From Willmore surface to the conformal Gauss map, and how to go back.
- The finite uniton case: classification of nilpotent normalized potential, and going back to the corresponding Willmore surfaces.
G K compact. \(f : M^2 \rightarrow G/K \) harmonic

\[\rightarrow F(z, \bar{z}, \lambda) : M^2 \rightarrow \Lambda G_{\sigma}, \lambda \in S^1. \quad \rightarrow \]

\[F(z, \bar{z}, \lambda) = F_-(z, \bar{z}, \lambda) F_+(z, \bar{z}, \lambda) \quad \text{(Birkhoff decomposition)} \]

\[F_- dF_- = \eta = \lambda^{-1} \eta_{-1} dz. \quad \text{(meromorphic) Normalized potential} \]

\[\eta = \lambda^{-1} \eta_{-1} dz. \quad \rightarrow F_- dF_- = \eta \]

\[\rightarrow F_- = F(z, \bar{z}, \lambda) F_+(z, \bar{z}, \lambda) \quad \text{Iwasawa decomposition} \]

\[\rightarrow F(z, \bar{z}, \lambda) : M^2 \rightarrow \Lambda G_{\sigma} \rightarrow f : M^2 \rightarrow G/K \text{ harmonic.} \]

Burstall-Guest: \(f \) finite uniton \(\iff \eta_{-1} \) locates in some nilpotent Lie subalgebra.
Strategy of DPW

- \(G/K \) compact. \(f : M^2 \to G/K \) harmonic

\[\implies F(z, \bar{z}, \lambda) : M^2 \to \Lambda G_\sigma, \lambda \in S^1. \implies \]
\[F(z, \bar{z}, \lambda) = F_-(z, \bar{z}, \lambda)F_+(z, \bar{z}, \lambda) \quad (\text{Birkhoff decomposition}) \]

\[F_-dF_- = \eta = \lambda^{-1}\eta_{-1}dz. \quad \text{(meromorphic) Normalized potential} \]

- \(\eta = \lambda^{-1}\eta_{-1}dz. \implies F_-dF_- = \eta \]

\[\implies F_- = F(z, \bar{z}, \lambda)F_+(z, \bar{z}, \lambda) \quad \text{Iwasawa decomposition} \]
\[\implies F(z, \bar{z}, \lambda) : M^2 \to \Lambda G_\sigma \implies f : M^2 \to G/K \text{ harmonic.} \]

- Burstall-Guest: \(f \) finite uniton \(\iff \eta_{-1} \) locates in some nilpotent Lie subalgebra.
Strategy of DPW

- G/K compact. $f : M^2 \to G/K$ harmonic

 $\implies F(z, \bar{z}, \lambda) : M^2 \to \Lambda G_\sigma$, $\lambda \in S^1$. \implies

 $F(z, \bar{z}, \lambda) = F_-(z, \bar{z}, \lambda)F_+(z, \bar{z}, \lambda)$ (Birkhoff decomposition)

 $F_-dF_- = \eta = \lambda^{-1}\eta_1dz$. (meromorphic) Normalized potential

- $\eta = \lambda^{-1}\eta_1dz$. $\implies F_-dF_- = \eta$

 $\implies F_- = F(z, \bar{z}, \lambda)F_+(z, \bar{z}, \lambda)$ Iwasawa decomposition

 $\implies F(z, \bar{z}, \lambda) : M^2 \to \Lambda G_\sigma \implies f : M^2 \to G/K$ harmonic.

- Burstall-Guest: f finite uniton $\iff \eta_1$ locates in some nilpotent Lie subalgebra.
Non-compact case vs compact case

- G non-compact Lie group, G/K inner symmetric. \implies
- $U \subset G^C$, U compact, and $U^C = G^C$, $(U \cap K^C)^C = K^C$.

- $f : M^2 \rightarrow G/K$, f harmonic, \implies (Iwasawa)
 $f_U : M^2 \rightarrow U/(U \cap K^C)$
 f has the same normalized potential as f_U.
 Especially, f is of finite uniton if and only if f_U is of finite uniton.
Non-compact case vs compact case

- G non-compact Lie group, G/K inner symmetric. \(\implies \)

 $U \subset G^C$, U compact, and $U^C = G^C$, $(U \cap K^C)^C = K^C$.

- $f : M^2 \to G/K$, f harmonic, \(\implies \) (Iwasawa)

 $f_U : M^2 \to U/(U \cap K^C)$

 f has the same normalized potential as f_U.

 Especially, f is of finite uniton if and only if f_U is of finite uniton.
Let C^{n+3} be the light cone of Lorentz-Minkowski space \mathbb{R}^{n+4}_1, then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{R}P^{n+3} | x \in C^{n+3} \setminus \{0\} \}$.

The conformal group of $S^{n+2}: = SO(1, n + 3)$.

$y : M \to S^{n+2}$ immersion, the conformal Gauss map

$$Gr : M \to Gr_{3,1}(\mathbb{R}^{n+4}_1) = SO(1, n + 3)/SO(1, 3) \times SO(n).$$

Gr corresponds to the mean curvature sphere congruence. y is a conformal enveloping surface of Gr.

y Willmore \iff Gr harmonic
Let C^{n+3} be the light cone of Lorentz-Minkowski space \mathbb{R}^{n+4}_1, then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{RP}^{n+3} \mid x \in C^{n+3} \setminus \{0\} \}$.

The conformal group of S^{n+2}: $= SO(1, n+3)$.

$y : M \to S^{n+2}$ immersion, the conformal Gauss map

$$Gr : M \to Gr_{3,1}(\mathbb{R}^{n+4}_1) = SO(1, n+3)/SO(1, 3) \times SO(n).$$

Gr corresponds to the mean curvature sphere congruence. y is a conformal enveloping surface of Gr.

y Willmore \iff Gr harmonic.
Willmore surfaces in S^{n+2}

- Let C^{n+3} be the light cone of Lorentz-Minkowski space \mathbb{R}^{1+n+4}, then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{R}P^{n+3} | x \in C^{n+3} \setminus \{0\} \}$.

- The conformal group of S^{n+2}: $= SO(1, n + 3)$.

- $y : M \rightarrow S^{n+2}$ immersion, the conformal Gauss map

\[Gr : M \rightarrow Gr_{3,1}(\mathbb{R}^{n+4}) = SO(1, n + 3)/SO(1, 3) \times SO(n). \]

Gr corresponds to the mean curvature sphere congruence. y is a conformal enveloping surface of Gr.

- y Willmore \iff Gr harmonic
Willmore surfaces in S^{n+2}

- Let C^{n+3} be the light cone of Lorentz-Minkowski space $\mathbb{R}^{1,n+4}$, then $S^{n+2} = Q^{n+2} = \{ [x] \in \mathbb{R}P^{n+3} | x \in C^{n+3} \setminus \{0\} \}$.

- The conformal group of S^{n+2}: $= SO(1, n + 3)$.

- $y : M \to S^{n+2}$ immersion, the conformal Gauss map

\[Gr : M \to Gr_{3,1}(\mathbb{R}^{n+4}) = SO(1, n + 3)/SO(1, 3) \times SO(n). \]

Gr corresponds to the mean curvature sphere congruence. y is a conformal enveloping surface of Gr.

- y Willmore \iff Gr harmonic
From Willmore surfaces to harmonic maps

- $y : M \to S^{n+2}$ Willmore \implies

 $Gr : M \to SO(1, n+3)/SO(1, 3) \times SO(n)$ harmonic, the Maurer-Cartan form is of the form

 $$\alpha' = \begin{pmatrix} A_1 & B_1 \\ -B_1^t I_{1,3} & A_2 \end{pmatrix} dz,$$

 with $B_1^t I_{1,3} B_1 = 0. (\implies \text{Rank}(B_1) \leq 2).$

- y S-Willmore $\iff B_1$ is of rank one.
From Willmore surfaces to harmonic maps

$y : M \rightarrow S^{n+2}$ Willmore \implies

$Gr : M \rightarrow SO(1, n+3)/SO(1, 3) \times SO(n)$ harmonic, the Maurer-Cartan form is of the form

$$\alpha' = \begin{pmatrix} A_1 & B_1 \\ -B_1^t I_{1,3} & A_2 \end{pmatrix} dz,$$

with

$$B_1^t I_{1,3} B_1 = 0. (\implies \text{Rank}(B_1) \leq 2).$$

$y \ S$-Willmore $\iff B_1$ is of rank one.
Let \(f : M \to SO(1, n + 3)/SO(1, 3) \times SO(n) \) be a harmonic map with its Maurer-Cartan form of \(f \) satisfying \(B_1^t I_{1,3} B_1 = 0 \).

- \(f \) envelops a pair of dual Willmore surfaces (hence S-Willmore) \(\iff \text{Rank}(B_1) = 1 \). (One of them may degenerate to a point).

- \(f \) envelops a unique surface \(y \iff \text{Rank}(B_1) = 2 \). (\(y \) may degenerate to a point).
Let $f : M \rightarrow SO(1, n + 3)/SO(1, 3) \times SO(n)$ be a harmonic map with its Maurer-Cartan form of f satisfying $B_1^t I_{1,3} B_1 = 0$.

- f envelopes a pair of dual Willmore surfaces (hence S-Willmore) \iff $\text{Rank}(B_1) = 1$. (One of them may degenerate to a point).

- f envelopes a unique surface y \iff $\text{Rank}(B_1) = 2$. (y may degenerate to a point).
Let \(f : M \to SO(1, n + 3)/SO(1, 3) \times SO(n) \) be a harmonic map with \(B_1^t I_{1,3} B_1 = 0 \). Then there exists an enveloping surface of \(f \) degenerating to a point, if and only if the normalized potential is of the form

\[
\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} dz, \quad \hat{B}_1 = (v_1, \cdots, v_n),
\]

with

\[
v_j \hookrightarrow \text{Span}_\mathbb{C} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, \quad j = 1, \cdots, n.
\]
Examples of Willmore surfaces of finite uniton in S^n

- Minimal surfaces in \mathbb{R}^n.
- Surfaces in S^4 coming from (anti-)holomorphic curves of the twistor bundle $\mathbb{C}P^3$.

Peng Wang (with Josef Dorfmeister)

Willmore two-spheres in S^{n+2} via Loop group theory
Examples of Willmore surfaces of finite uniton in S^n

- Minimal surfaces in \mathbb{R}^n.
- Surfaces in S^4 coming from (anti-)holomorphic curves of the twistor bundle $\mathbb{C}P^3$.

Peng Wang (with Josef Dorfmeister)
For a harmonic map $f : M \to SO(1, 7)/SO(1, 3) \times SO(4)$ of finite uniton, with $B_1^t I_{1,3} B_1 = 0$. Suppose that the normalized potential

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} \, dz, \quad \hat{B}_1 = (v_1, \cdots, v_4).$$

Then up to a conjugation of $SO(1, 3) \times SO(4)$, \hat{B}_1 must be one of the three cases:

1. $v_j \hookrightarrow \text{Span}_\mathbb{C} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, j = 1, \cdots, 4.$
2. $v_2 = iv_1, v_3 = iv_4.$
3. $v_2 = iv_1, v_3, v_4 \hookrightarrow \text{Span}_\mathbb{C} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}.$
Willmore surfaces of finite uniton in S^6

For a harmonic map $f : M \to SO(1,7)/SO(1,3) \times SO(4)$ of finite uniton, with $B_1^t I_{1,3} B_1 = 0$. Suppose that the normalized potential

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}_1^t I_{1,3} & 0 \end{pmatrix} dz, \hat{B}_1 = (v_1, \cdots , v_4).$$

Then up to a conjugation of $SO(1,3) \times SO(4)$, \hat{B}_1 must be one of the three cases:

1. $v_j \hookrightarrow \text{Span}_\mathbb{C} \{(1, 1, 0, 0)^t, (0, 0, 1, i)^t\}, j = 1, \cdots , 4.$
2. $v_2 = iv_1, v_3 = iv_4.$
3. $v_2 = iv_1, v_3, v_4 \hookrightarrow \text{Span}_\mathbb{C} \{(1, 1, 0, 0)^t, (0, 0, 1, i)^t\}.$
For a harmonic map $f : M \to SO(1, 7)/SO(1, 3) \times SO(4)$ of finite uniton, with $B^t_1 I_{1,3} B_1 = 0$. Suppose that the normalized potential

$$\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}^t_1 I_{1,3} & 0 \end{pmatrix} dz, \hat{B}_1 = (v_1, \ldots, v_4).$$

Then up to a conjugation of $SO(1, 3) \times SO(4)$, \hat{B}_1 must be one of the three cases:

1. $v_j \leftrightarrow \text{Span}_\mathbb{C} \{(1, 1, 0, 0)^t, (0, 0, 1, i)^t\}, j = 1, \ldots, 4.$
2. $v_2 = iv_1, v_3 = iv_4.$
3. $v_2 = iv_1, v_3, v_4 \leftrightarrow \text{Span}_\mathbb{C} \{(1, 1, 0, 0)^t, (0, 0, 1, i)^t\}.$
Going back to Willmore surfaces of finite uniton in S^6

- Case (1).

\[\text{Rank}(\hat{B}_1) = 1 \iff y \text{ conformal to minimal surface in } \mathbb{R}^6, \]
\[\text{Rank}(\hat{B}_1) = 2 \iff y \text{ degenerates to a point.} \]

- Case (2) $\Rightarrow y$ totally isotropic. For Case (2)\setminusCase (1).

\[\text{Rank}(\hat{B}_1) = 1 \iff y \text{ S-Willmore,} \]
\[\text{Rank}(\hat{B}_1) = 2 \iff y \text{ not S-Willmore.} \]

- Case (3)\setminusCase (2) and Case (1): $\Rightarrow \text{Rank}(\hat{B}_1) = 2$

y having non isotropic Hopf differential, not S-Willmore.

- Case (1) and Case (2) are all the cases such that f is S^1-invariant.
Going back to Willmore surfaces of finite uniton in S^6

- Case (1).

\[\text{Rank}(\hat{B}_1) = 1 \iff y \text{ conformal to minimal surface in } \mathbb{R}^6, \]
\[\text{Rank}(\hat{B}_1) = 2 \iff y \text{ degenerates to a point}. \]

- Case (2) \implies y \text{ totally isotropic. For Case (2)\backslash Case (1).}

\[\text{Rank}(\hat{B}_1) = 1 \iff y \text{ S-Willmore}, \]
\[\text{Rank}(\hat{B}_1) = 2 \iff y \text{ not S-Willmore}. \]

- Case (3)\backslash Case (2) and Case (1): \implies \text{Rank}(\hat{B}_1) = 2

\ y \text{ having non isotropic Hopf differential, not S-Willmore.}

- Case (1) and Case (2) are all the cases such that f is S^1-invariant.
Going back to Willmore surfaces of finite uniton in S^6

- Case (1).

 $\text{Rank}(\hat{B}_1) = 1 \iff y$ conformal to minimal surface in \mathbb{R}^6,
 $\text{Rank}(\hat{B}_1) = 2 \iff y$ degenerates to a point.

- Case (2) $\Rightarrow y$ totally isotropic. For Case (2) \setminus Case (1).

 $\text{Rank}(\hat{B}_1) = 1 \iff y$ S-Willmore,
 $\text{Rank}(\hat{B}_1) = 2 \iff y$ not S-Willmore.

- Case (3) \setminus Case (2) and Case (1): $\Rightarrow \text{Rank}(\hat{B}_1) = 2$

 y having non isotropic Hopf differential, not S-Willmore.

- Case (1) and Case (2) are all the cases such that f is S^1-invariant.
Case (1).

\[\text{Rank}(\hat{B}_1) = 1 \iff y \text{ conformal to minimal surface in } \mathbb{R}^6, \]
\[\text{Rank}(\hat{B}_1) = 2 \iff y \text{ degenerates to a point.} \]

Case (2) \Rightarrow y \text{ totally isotropic. For Case (2) \backslash Case (1).}

\[\text{Rank}(\hat{B}_1) = 1 \iff y \text{ S-Willmore,} \]
\[\text{Rank}(\hat{B}_1) = 2 \iff y \text{ not S-Willmore.} \]

Case (3) \backslash Case (2) and Case (1): \Rightarrow \text{Rank}(\hat{B}_1) = 2
y \text{ having non isotropic Hopf differential, not S-Willmore.}

Case (1) and Case (2) are all the cases such that \(f \) is \(S^1 \)-invariant.
Examples of Case (2)

The normalized potential

\[\eta = \lambda^{-1} \begin{pmatrix} 0 & \hat{B}_1 \\ -\hat{B}^t_1 I_{1,3} & 0 \end{pmatrix} \, dz, \]

with

\[\hat{B}_1 = \frac{1}{2} \begin{pmatrix} 2iz & -2z & -i & 1 \\ -2iz & 2z & -i & 1 \\ -2 & -2i & -z & -iz \\ 2i & -2 & -iz & z \end{pmatrix}. \]
\[
Y = \begin{pmatrix}
(1 + r^2 + \frac{5r^4}{4} + \frac{4r^6}{9} + \frac{r^8}{36}) \\
(1 - r^2 - \frac{3r^4}{4} + \frac{4r^6}{9} - \frac{r^8}{36}) \\
- i \left(z - \bar{z} \right) \left(1 + \frac{r^6}{9} \right) \\
\left(z + \bar{z} \right) \left(1 + \frac{r^6}{9} \right) \\
- i \left(\lambda^{-1} z^2 - \lambda \bar{z}^2 \right) \left(1 - \frac{r^4}{12} \right) \\
\left(\lambda^{-1} z^2 + \lambda \bar{z}^2 \right) \left(1 - \frac{r^4}{12} \right) \\
- \frac{i}{2} r^2 \left(\lambda^{-1} z - \lambda \bar{z} \right) \left(1 + \frac{4r^2}{3} \right) \\
\frac{r^2}{2} \left(\lambda^{-1} z + \lambda \bar{z} \right) \left(1 + \frac{4r^2}{3} \right)
\end{pmatrix}, \quad r = |z|.
\]

\[
y = [Y] : S^2 \to S^6 \text{ is a totally isotropic immersed Willmore sphere which is not S-Willmore.}
\]
$y = \begin{bmatrix}
(1 + r^2 + \frac{5r^4}{4} + \frac{4r^6}{9} + \frac{r^8}{36}) \\
(1 - r^2 - \frac{3r^4}{4} + \frac{4r^6}{9} - \frac{r^8}{36}) \\
- \frac{1}{2} \left(\lambda^{-1}z^2 - \lambda \bar{z}^2 \right) (1 - \frac{r^4}{12}) \\
\left(\lambda^{-1}z^2 + \lambda \bar{z}^2 \right) (1 - \frac{r^4}{12}) \\
- \frac{1}{2} \frac{r^2}{2} \left(\lambda^{-1}z - \lambda \bar{z} \right) (1 + \frac{4r^2}{3}) \\
\frac{r^2}{2} \left(\lambda^{-1}z + \lambda \bar{z} \right) (1 + \frac{4r^2}{3})
\end{bmatrix}$

, $r = |z|$.

$y = [Y] : S^2 \rightarrow S^6$ is a totally isotropic immersed Willmore sphere which is not S-Willmore.
The S^4 case

- Case (3) can not happen.

- Case (1) \implies minimal surfaces in R^4.

- For case (2), $rank(B_1) = 1$. The corresponding Willmore surfaces are always S-Willmore having isotropic Hopf differential. \Rightarrow holomorphic or anti-holomorphic curves in CP^3.

Peng Wang (with Josef Dorfmeister)
Willmore two-spheres in S^{n+2} via Loop group theory
Case (3) can not happen.

Case (1) \Rightarrow minimal surfaces in R^4.

For case (2), $rank(B_1) = 1$. The corresponding Willmore surfaces are always S-Willmore having isotropic Hopf differential. \Rightarrow holomorphic or anti-holomorphic curves in CP^3.
Case (3) can not happen.

Case (1) \implies minimal surfaces in R^4.

For case (2), $\text{rank}(B_1) = 1$. The corresponding Willmore surfaces are always S-Willmore having isotropic Hopf differential. \Rightarrow holomorphic or anti-holomorphic curves in CP^3.

Peng Wang (with Josef Dorfmeister)

Willmore two-spheres in S^{n+2} via Loop group theory
Suppose that $\hat{B}_1 = (v_1, \cdots, v_{2m})$. Then up to a conjugation of $SO(1, 3) \times SO(2m)$, \hat{B}_1 must be one of the $(m + 1)$ cases:

1.

 $v_j \mapsto \text{Span}_\mathbb{C} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, j = 1, \cdots, 2m.$

2.

 $v_2 = iv_1, v_j \mapsto \text{Span}_\mathbb{C} \left\{ (1, 1, 0, 0)^t, (0, 0, 1, i)^t \right\}, j = 3, \cdots, 2m.$

3.

 $v_2 = iv_1, v_4 = iv_3, \cdots, v_{2m} = iv_{2m-1}.$

Peng Wang (with Josef Dorfmeister) *Willmore two-spheres in S^{n+2} via Loop group theory*

Thank you!