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Notations:

◮ M is a closed manifold,

◮ Riem(M) is the space of all Riemannian metrics,

◮ Rg is the scalar curvature for a metric g ,

◮ Riem+(M) is the subspace of metrics with Rg > 0,

◮ “psc-metric” = “metric with positive scalar curvature”.

Definition 1. Psc-metrics g0 and g1 are psc-isotopic if there is
a smooth path of psc-metrics g(t), t ∈ [0, 1], with g(0) = g0 and
g(1) = g1.

Remark: In fact, g0 and g1 are psc-isotopic if and only if they
belong to the same path-component in Riem+(M).



Remark: There are many examples of manifolds with infinite
π0Riem+(M). In particular, Z ⊂ π0Riem+(M) if M is spin and
dimM = 4k + 3, k ≥ 1.

Definition 2: Psc-metrics g0 and g1 are psc-concordant if there
is a psc-metric ḡ on M × I such that

ḡ |M×{i} = gi , i = 0, 1

with ḡ = gi + dt2 near M × {i}, i = 0, 1.

Definition 2′: Psc-metrics g0 and g1 are psc-concordant if
there is a psc-metric ḡ on M × I such that

ḡ |M×{i} = gi , i = 0, 1.

with minimal boundary condition i.e. the mean curvature is
zero along the boundary M × {i}, i = 0, 1.



Remark: Definitions 2 and Definition 2′ are equivalent.
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Remark: Any psc-isotopic metrics are psc-concordant.

Question: Does psc-concordance imply psc-isotopy?

My goal today: To give some answers to this Question.



Topology:

A diffeomorphism Φ : M × I → M × I is a pseudo-isotopy if

M × I

M × I

Φ

Φ|M×{0} = IdM×{0}

Let Diff(M × I ,M × {0}) ⊂ Diff(M × I ) be the group of
pseudo-isotopies.

A smooth function ᾱ : M × I → I without critical points is
called a slicing function if

ᾱ−1(0) = M × {0}, ᾱ−1(1) = M × {1}.

Let E(M × I ) be the space of slicing functions.



There is a natural map

σ : Diff(M × I ,M × {0}) −→ E(M × I )

which sends Φ : M × I −→ M × I to the function

σ(Φ) = πI ◦ Φ : M × I
Φ

−→ M × I
πI−→ I .

Theorem.(J. Cerf) The map

σ : Diff(M × I ,M × {0}) −→ E(M × I )

is a homotopy equivalence.



Theorem. (J. Cerf) Let M be a closed simply connected
manifold of dimension dimM ≥ 5. Then

π0(Diff(M × I ,M × {0}) = 0.

Remark: In particular, for simply connected manifolds of
dimension at least five any two diffeomorphisms which are
pseudo-isotopic, are isotopic.

Remark: The group π0(Diff(M × I ,M × {0}) is non-trivial for
most non-simply connected manifolds.



Example: (D. Ruberman, ’02) There exists a simply connected
4-manifold M4 and psc-concordant psc-metrics g0 and g1 which
are not psc-isotopic.

The obstruction comes from Seiberg-Witten invariant: in fact,
it detects a gap between isotopy and pseudo-isotopy of
diffeomorphisms for 4-manifolds.

In particular, the above psc-metrics g0 and g1 are isotopic in
the moduli space Riem+(M)/Diff(M).

Conclusion: It is reasonable to expect that psc-concordant
metrics g0 and g1 are homotopic in the moduli space

Riem+(M)/Diff(M).



Theorem A. Let M be a closed compact manifold with
dimM ≥ 4. Assume that g0, g1 ∈ Riem+(M) are two
psc-concordant metrics. Then there exists a pseudo-isotopy

Φ ∈ Diff(M × I ,M × {0}),

such that the psc-metrics g0 and (Φ|M×{1})
∗g1 are psc-isotopic.

According to J. Cerf, there is no obstruction for two
pseudo-isotopic diffeomorphisms to be isotopic for simply
connected manifolds of dimension at least five.
Thus Theorem A implies

Theorem B. Let M be a closed simply connected manifold with
dimM ≥ 5. Then two psc-metrics g0 and g1 on M are
psc-isotopic if and only if the metrics g0, g1 are psc-concordant.



We use the abbreviation “(C⇐⇒I)(M)” for the following
statement:

“Let g0, g1 ∈ Riem+(M) be any psc-concordant metrics.
Then there exists a pseudo-isotopy

Φ ∈ Diff(M × I ,M × {0})

such that the psc-metrics

g0 and (Φ|M×{1})
∗g1

are psc-isotopic.”



The strategy to prove Theorem A.

1. Surgery. Let M be a closed manifold, and Sp × Dq+1 ⊂ M.

We denote by M ′ the manifold which is the result of the surgery
along the sphere Sp:

M ′ = (M \ (Sp × Dq+1)) ∪Sp×Sq (Dp+1 × Sq).

Codimension of this surgery is q + 1.

Sp×Dq+1×I1

Sp×D
q+2
+

VV0
M × I0

Dp+1×Dq+1

M ′

M × I0



Example: surgeries Sk ⇐⇒ S1 × Sk−1.

S0 × Dk

D1
−

D1
+

D1 × Sk−1

Sk S1 × Sk−1

The first surgery on Sk to obtain S1 × Sk−1



SkS1 × Sk−1

S1 × Dk−1

The second surgery on S1 × Sk−1 to obtain Sk
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SkS1 × Sk−1

S1 × Dk−1

The second surgery on S1 × Sk−1 to obtain Sk



Definition. Let M and M ′ be manifolds such that:

◮ M ′ can be constructed out of M by a finite sequence of
surgeries of codimension at least three;

◮ M can be constructed out of M ′ by a finite sequence of
surgeries of codimension at least three.

Then M and M ′ are related by admissible surgeries.

Examples: M = Sk and M ′ = S3 × T k−3;

M ∼= M#Sk and M ′ = M#(S3 × T k−3), where k ≥ 4.

PSC-Concordance-Isotopy Surgery Lemma. Let M and M ′ be
two closed manifolds related by admissible surgeries. Then the
statements

(C⇐⇒I)(M) and (C⇐⇒I)(M ′)

are equivalent.



M × I0 × [0, 1]

Dp+2×Dq+1

Sp+1×Dq+1

Sp×Dq+1×I1

Proof of Surgery Lemma
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g0 g1

Proof of Surgery Lemma
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2. Surgery and Ricci-flatness.

Examples of manifolds which do not admit any Ricci-flat
metric:

S3, S3 × T k−3.

Observation. Let M be a closed connected manifold with
dimM = k ≥ 4. Then the manifold

M ′ = M#(S3 × T k−3)

does not admit a Ricci-flat metric [Cheeger-Gromoll, 1971].

The manifolds M and M ′ are related by admissible surgeries.

Surgery Lemma implies that it is enough to prove Theorem A
for those manifolds which do not admit any Ricci-flat metric.



3. Pseudo-isotopy and psc-concordance.

Let (M × I , ḡ ) be a psc-concordance and ᾱ : M × I → I be a
slicing function. Let C̄ = [ḡ ] the conformal class. We use the
vector field:

Xᾱ =
∇ᾱ

|∇ᾱ|2ḡ
∈ X(M × I ).

Let γx(t) be the integral curve of the vector field Xᾱ such that
γx(0) = (x , 0).

x
γx(t)

Then γx(1) ∈ M × {1}, and d ᾱ(Xᾱ) = ḡ 〈∇ᾱ,Xᾱ〉 = 1 .



We obtain a pseudo-isotopy: Φ : M × I → M × I defined by the
formula

Φ : (x , t) 7→ (πM(γx (t)), πI (γx(t))).

Lemma. (K. Akutagawa) Let C̄ ∈ C(M × I ) be a conformal
class, and ᾱ ∈ E(M × I ) be a slicing function. Then there exists
a unique metric ḡ ∈ (Φ−1)∗C̄ such that






ḡ = ḡ |Mt
+ dt2 on M × I

Volgt (Mt) = Volg0(M0) for all t ∈ I

up to pseudo-isotopy Φ arising from ᾱ.

In particular, the function (Φ−1)∗ᾱ is just a standard projection
M × I → M.



Conformal Laplacian and minimal boundary condition:

Let (W , ḡ) be a manifold with boundary ∂W , dimW = n.

◮ Aḡ is the second fundamental form along ∂W ;

◮ Hḡ = tr Aḡ is the mean curvature along ∂W ;

◮ hḡ = 1
n−1Hḡ is the “normalized” mean curvature.

Let g̃ = u
4

n−2 ḡ . Then

Rg̃ = u
− n+2

n−2

(
4(n−1)
n−2 ∆ḡu + Rḡu

)
= u

− n+2
n−2 Lḡu

hg̃ = 2
n−2u

− n
n−2

(
∂νu + n−2

2 hḡu
)

= u
− n

n−2 Bḡu

◮ Here ∂ν is the derivative with respect to outward unit
normal vector field.



The minimal boundary problem:






Lḡu = 4(n−1)
n−2 ∆ḡu + Rḡu = λ1u on W

Bḡu = ∂νu + n−2
2 hḡu = 0 on ∂W .

If u is the eigenfunction corresponding to the first eigenvalue,

i.e. Lḡu = λ1u, and g̃ = u
4

n−2 ḡ , then






Rg̃ = u
− n+2

n−2 Lḡu = λ1u
− 4

n−2 on W

hg̃ = u
− n

n−2 Bḡu = 0 on ∂W .



4. Sufficient condition. Let (M × I , ḡ ) be a Riemannian
manifold with the minimal boundary condition, and let
ᾱ : M × I → I be a slicing function. For each t < s, we define:

Wt,s = ᾱ−1([t, s]), ḡt,s = ḡ |Wt,s

t s

Consider the conformal Laplacian Lḡt,s on (Wt,s , ḡt,s). Let
λ1(Lḡt,s ) be the first eigenvalue of Lḡt,s on (Wt,s , ḡt,s) with the
minimal boundary condition.

We obtain a function Λ(M×I ,ḡ ,ᾱ) : (t, s) 7→ λ1(Lḡt,s ).



Theorem 1. Let M be a closed manifold with dimM ≥ 3 which
does not admit a Ricci-flat metric. Let g0, g1 ∈ Riem+(M) and
ḡ be a Riemannian metric on M × I with minimal boundary
condition such that

ḡ |M×{0} = g0, ḡ |M×{1} = g1.

Assume ᾱ : M × I → I is a slicing function such that
Λ(M×I ,ḡ ,ᾱ) ≥ 0. Then there exists a pseudo-isotopy

Φ : M × I −→ M × I

such that the metrics g0 and (Φ|M×{1})
∗g1 are psc-isotopic.



Theorem 1. Let M be a closed manifold with dimM ≥ 3 which
does not admit a Ricci-flat metric. Let g0, g1 ∈ Riem+(M) and
ḡ be a Riemannian metric on M × I with minimal boundary
condition such that

ḡ |M×{0} = g0, ḡ |M×{1} = g1.

Assume ᾱ : M × I → I is a slicing function such that
Λ(M×I ,ḡ ,ᾱ) ≥ 0. Then there exists a pseudo-isotopy

Φ : M × I −→ M × I

such that the metrics g0 and (Φ|M×{1})
∗g1 are psc-isotopic.

Question: Why do we need the condition that M does not
admit a Ricci-flat metric?



Assume the slicing function ᾱ coincides with the projection

πI : M × I → I .

Moreover, we assume that ḡ = gt + dt2 with respect to the
coordinate system given by the projections

M × I
πI−→ I , M × I

πM−→ M.

Let Lḡt,s be the conformal Laplacian on the cylinder (Wt,s , ḡt,s)
with the minimal boundary condition, and λ1(Lḡt,s ) be the first
eigenvalue of the minimal boundary problem.

For given t we denote Lgt the conformal Laplacian on the slice
(Mt , gt).

Lemma. The assumption λ1(Lḡt,s ) ≥ 0 for all t < s implies that
λ1(Lgt ) ≥ 0 for all t.



We find positive eigenfunctions u(t) corresponding to the

eigenvalues λ1(Lgt ) and let ĝt = u(t)
4

k−2 gt . Then

Rĝt
= u(t)−

4
k−2 λ1(Lgt ) =

{
> 0 if λ1(Lgt ) > 0,
≡ 0 if λ1(Lgt ) = 0.

Then we apply the Ricci flow:

Rĝt
= 0

ĝ0

Rĝt
> 0

Rĝt
> 0

ĝ1

Ricci flow applied to the path ĝt .



We find positive eigenfunctions u(t) corresponding to the

eigenvalues λ1(Lgt ) and let ĝt = u(t)
4

k−2 gt . Then

Rĝt
= u(t)−

4
k−2 λ1(Lgt ) =

{
> 0 if λ1(Lgt ) > 0,
≡ 0 if λ1(Lgt ) = 0.

Then we apply the Ricci flow:

Rĝt
= 0

ĝ0

Rĝt
> 0

Rĝt
> 0

Rĝt(τ0) > 0 everywhere
ĝ1

Ricci flow applied to the path ĝt .



We recall:

∂Rĝt(τ)

∂τ
= ∆Rĝt(τ) + 2|Ricĝt(τ) |

2, ĝt(0) = ĝt .

Remark: If λ1(Lgt ) = 0, we really need the condition that M

does not have a Ricci flat metric.

Then if the metric ĝt is scalar flat, it cannot be Ricci-flat.

In the general case, there exists a pseudo-isotopy

Φ : M × I −→ M × I

(given by the slicing function ᾱ) such that the metric Φ∗ḡ

satisfies the above conditions.



5. Necessary Condition.

Theorem 2. Let M be a closed manifold with dimM ≥ 3, and
g0, g1 ∈ Riem(M) be two psc-concordant metrics. Then there
exist

◮ a psc-concordance (M × I , ḡ) between g0 and g1 and

◮ a slicing function ᾱ : M × I → I

such that Λ(M×I ,ḡ ,ᾱ) ≥ 0.

Sketch of the proof. Let g0, g1 ∈ Riem+(M) be psc-concordant.
We choose a psc-concordance (M × I , ḡ) between g0 and g1 and
a slicing function ᾱ : M × I → I .

The notations: Wt,s = ᾱ−1([t, s]), ḡt,s = ḡ |Wt,s
.
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Key construction: a bypass surgery.

Example. We assume:

� consider the manifolds(W0,t , ḡ0,t)

g0

0 t0 t1 1

g1

Λ(0, t)



Recall the minimal boundary problem:






Lḡ0,t
u = 4(n−1)

n−2 ∆ḡ0,t
u + Rḡ0,t

u = λ1u on W0,t

Bḡu = ∂νu + n−2
2 hḡ0,t

u = 0 on ∂W0,t .

where Λ(0, t) = λ1 is the first eigenvalue of Lḡ0,t
with minimal

boundary conditions.

If u is the eigenfunction corresponding to the first eigenvalue,

and g̃0,t = u
4

n−2 ḡ0,t , then






Rg̃0,t
= u

− n+2
n−2 Lḡ0,t

u = λ1u
− 4

n−2 on W0,t

hg̃0,t
= u

− n
n−2 Bḡ0,t

u = 0 on ∂W0,t .



There is the second boundary problem:






Lḡ0,t
u = 4(n−1)

n−2 ∆ḡ0,t
u + Rḡ0,t

u = 0 on W0,t

Bḡu = ∂νu + n−2
2 hḡ0,t

u = µ1u on ∂W0,t .

where µ1 is the corresponding first eigenvalue.

If u is the eigenfunction corresponding to the first eigenvalue,

and g̃0,t = u
4

n−2 ḡ0,t , then






Rg̃0,t
= u

− n+2
n−2 Lḡ0,t

u = 0 on W0,t

hg̃0,t
= u

− n
n−2 Bḡ0,t

u = µ1u
− 2

n−2 on ∂W0,t .

It is well-known that λ1 and µ1 have the same sign.
In particular, λ1 = 0 if and only if µ1 = 0.



Concerning the manifolds (W0,t , ḡ0,t), there exist metrics
ĝ0,t ∈ [ḡ0,t ] such that

(1) Rĝ0,t
≡ 0, t0 ≤ t ≤ t1,

(2) Hĝ0,t
≡






ξt > 0 if 0 < t < t0
0 if t = t0,

ξt < 0 if t0 ≤ t ≤ t1
0 if t = t1,

ξt > 0 if t1 < t ≤ 1.






along ∂W0,t .

Here the functions ξt depend continuously on t and

sign(ξt) = sign(µ1) = sign(λ1)

and λ1 = Λ(0, t).



Observation. Let (V , g̃) be a manifold with boundary ∂V and
with λ1 = µ1 = 0 (zero conformal class), and

{
Rg̃ ≡ 0 on V

Hg̃ = f on ∂V (where f 6≡ 0)

Then

∫

∂V

f dσ < 0.

Indeed, let ḡ be such that Rḡ ≡ 0 and Hḡ ≡ 0. Then g̃ = u
4

n−2 ḡ ,
and {

∆ḡu ≡ 0 on V

∂νu = bnu
n

n−2 f on ∂V , bn = 2(n−1)
n−2

Integration by parts gives

∫

∂V

f dσ = b−1
n

∫

∂V

u
− n

n−2 ∂νu dσ < 0.



Theorem. (O. Kobayashi) Let k >> 0. There exists a metric
h(k) on Sn−1 (Osamu Kobayashi metric) such that

(a) Rh(k) > k,

(b) Volh(k)(Sn−1) = 1.

For t > 0, we construct the tube (Sn−1 × [0, t], h(k) + dt2).

(Sn−1 × [0, t], h̃0,t) h̃0,t ∈ [h(k) + dt2]

Rh̃0,t
≡ 0

Hh̃0,t
= Ft

-

Choose k such that Ft > |ξt |



(Sn−1 × [0, t], h̃0,t) h̃0,t ∈ [h(k) + dt2]

Rh̃0,t
≡ 0

Hh̃0,t
= Ft

-

Hg̃0,t
≡ ξt

-
0 t0 t

Rg̃0,t
≡ 0

(W0,t , g̃0,t) (Ŵ0,t ,ĝ0,t)=(W0,t#
(
Sn−1×[0, t]

)
,g̃0,t#̃h0,t)

Ft > |ξt |

Assume that (Ŵ0,t , ĝ0,t) has zero conformal class. Then

∫

∂cW0,t

Ĥ0,tdσ0,t < 0;

this fails since Ft > |ξt |. Thus (Ŵ0,t , ĝ0,t) cannot be of zero conformal class.

Rbg0,t
≡ 0

Rbg0,t
≡ 0



(Sn−1 × [0, t], h̃0,t) D. Joyce
�

�
�

�
�

�
�

�
�

�	
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There is another bypass surgery:

t0 t1

(M × I , ḡ)

(Sn−1 × I , h(k) + dt2)



THANK YOU!


