Surgery, concordance and isotopy of metrics of positive scalar curvature

Boris Botvinnik University of Oregon, Eugene, USA

December 9th, 2011 The 10th Pacific Rim Geometry Conference Osaka-Fukuoka, Japan

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Notations:

- $\blacktriangleright M \text{ is a closed manifold},$
- ▶ \mathcal{R} iem(M) is the space of all Riemannian metrics,
- ▶ R_g is the scalar curvature for a metric g,
- $\mathcal{R}iem^+(M)$ is the subspace of metrics with $R_g > 0$,
- ▶ "psc-metric" = "metric with positive scalar curvature".

Definition 1. Psc-metrics g_0 and g_1 are **psc-isotopic** if there is a smooth path of psc-metrics g(t), $t \in [0, 1]$, with $g(0) = g_0$ and $g(1) = g_1$.

Remark: In fact, g_0 and g_1 are psc-isotopic if and only if they belong to the same path-component in $\mathcal{R}iem^+(M)$.

Remark: There are many examples of manifolds with infinite $\pi_0 \mathcal{R}iem^+(M)$. In particular, $\mathbf{Z} \subset \pi_0 \mathcal{R}iem^+(M)$ if M is spin and dim M = 4k + 3, $k \ge 1$.

Definition 2: Psc-metrics g_0 and g_1 are **psc-concordant** if there is a psc-metric \bar{g} on $M \times I$ such that

$$\bar{\mathsf{g}}|_{M\times\{i\}}=g_i,\quad i=0,1$$

with
$$\bar{g} = g_i + dt^2$$
 near $M \times \{i\}, i = 0, 1$.

Definition 2': Psc-metrics g_0 and g_1 are **psc-concordant** if there is a psc-metric \overline{g} on $M \times I$ such that

$$\bar{g}|_{M\times\{i\}}=g_i,\quad i=0,1.$$

with **minimal boundary condition** i.e. the mean curvature is zero along the boundary $M \times \{i\}$, i = 0, 1.

Remark: Definitions 2 and Definition 2' are equivalent. [Akutagawa-Botvinnik, 2002]

Remark: Any psc-isotopic metrics are psc-concordant.

Question: Does psc-concordance imply psc-isotopy?

Remark: Definitions 2 and Definition 2' are equivalent. [Akutagawa-Botvinnik, 2002]

Remark: Any psc-isotopic metrics are psc-concordant.

Question: Does psc-concordance imply psc-isotopy?

My goal today: To give some answers to this Question.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Topology:

Let $\text{Diff}(M \times I, M \times \{0\}) \subset \text{Diff}(M \times I)$ be the group of pseudo-isotopies.

A smooth function $\bar{\alpha}:M\times I\to I$ without critical points is called a slicing function if

$$\bar{\alpha}^{-1}(0) = M \times \{0\}, \quad \bar{\alpha}^{-1}(1) = M \times \{1\}.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Let $\mathcal{E}(M \times I)$ be the space of slicing functions.

There is a natural map

 $\sigma: \mathrm{Diff}(M \times I, M \times \{0\}) \longrightarrow \mathcal{E}(M \times I)$

which sends $\Phi: M \times I \longrightarrow M \times I$ to the function

$$\sigma(\Phi) = \pi_I \circ \Phi : M \times I \xrightarrow{\Phi} M \times I \xrightarrow{\pi_I} I.$$

Theorem.(J. Cerf) The map

$$\sigma: \mathrm{Diff}(M \times I, M \times \{0\}) \longrightarrow \mathcal{E}(M \times I)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

is a homotopy equivalence.

Theorem. (J. Cerf) Let M be a closed simply connected manifold of dimension dim $M \ge 5$. Then

 $\pi_0(\mathrm{Diff}(M\times I,M\times\{0\})=0.$

Remark: In particular, for simply connected manifolds of dimension at least five any two diffeomorphisms which are **pseudo-isotopic**, are **isotopic**.

Remark: The group $\pi_0(\text{Diff}(M \times I, M \times \{0\}))$ is non-trivial for most non-simply connected manifolds.

Example: (D. Ruberman, '02) There exists a simply connected 4-manifold M^4 and psc-concordant psc-metrics g_0 and g_1 which are not psc-isotopic.

The obstruction comes from Seiberg-Witten invariant: in fact, it detects a gap between isotopy and pseudo-isotopy of diffeomorphisms for 4-manifolds.

In particular, the above psc-metrics g_0 and g_1 are isotopic in the moduli space $\mathcal{R}iem^+(M)/\text{Diff}(M)$.

Conclusion: It is reasonable to expect that psc-concordant metrics g_0 and g_1 are homotopic in the moduli space

 $\mathcal{R}\mathrm{iem}^+(M)/\mathrm{Diff}(M).$

Theorem A. Let M be a closed compact manifold with dim $M \ge 4$. Assume that $g_0, g_1 \in \mathcal{R}iem^+(M)$ are two psc-concordant metrics. Then there exists a pseudo-isotopy

 $\Phi \in \operatorname{Diff}(M \times I, M \times \{0\}),$

such that the psc-metrics g_0 and $(\Phi|_{M \times \{1\}})^* g_1$ are psc-isotopic.

According to J. Cerf, there is no obstruction for two pseudo-isotopic diffeomorphisms to be isotopic for simply connected manifolds of dimension at least five. Thus **Theorem A** implies

Theorem B. Let M be a closed simply connected manifold with dim $M \ge 5$. Then two psc-metrics g_0 and g_1 on M are psc-isotopic if and only if the metrics g_0 , g_1 are psc-concordant.

We use the abbreviation " $(C \iff I)(M)$ " for the following statement:

"Let $g_0, g_1 \in \mathcal{R}iem^+(M)$ be any psc-concordant metrics. Then there exists a pseudo-isotopy

 $\Phi \in \mathrm{Diff}(M \times I, M \times \{0\})$

such that the psc-metrics

 g_0 and $(\Phi|_{M \times \{1\}})^* g_1$

are psc-isotopic."

The strategy to prove Theorem A.

1. Surgery. Let *M* be a closed manifold, and $S^p \times D^{q+1} \subset M$.

We denote by M' the manifold which is the result of the surgery along the sphere S^p :

$$M' = (M \setminus (S^p \times D^{q+1})) \cup_{S^p \times S^q} (D^{p+1} \times S^q).$$

Codimension of this surgery is q + 1.

Example: surgeries $S^k \iff S^1 \times S^{k-1}$.

The first surgery on \mathcal{S}^k to obtain $\mathcal{S}^1\times\mathcal{S}^{k-1}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The second surgery on $S^1\times S^{k-1}$ to obtain S^k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The second surgery on $S^1\times S^{k-1}$ to obtain S^k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The second surgery on $S^1\times S^{k-1}$ to obtain S^k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition. Let M and M' be manifolds such that:

- ▶ M' can be constructed out of M by a finite sequence of surgeries of codimension at least three;
- ▶ M can be constructed out of M' by a finite sequence of surgeries of codimension at least three.

Then M and M' are related by admissible surgeries.

Examples:
$$M = S^k$$
 and $M' = S^3 \times T^{k-3}$;
 $M \cong M \# S^k$ and $M' = M \# (S^3 \times T^{k-3})$, where $k \ge 4$.

PSC-Concordance-Isotopy Surgery Lemma. Let M and M' be two closed manifolds related by admissible surgeries. Then the statements

$$(\mathbf{C} \Longleftrightarrow \mathbf{I})(M)$$
 and $(\mathbf{C} \Leftrightarrow \mathbf{I})(M')$

are equivalent.

2. Surgery and Ricci-flatness.

Examples of manifolds which **do not admit any Ricci-flat metric:**

$$S^3$$
, $S^3 \times T^{k-3}$.

Observation. Let M be a closed connected manifold with dim $M = k \ge 4$. Then the manifold

$$M' = M \# (S^3 \times T^{k-3})$$

does not admit a Ricci-flat metric [Cheeger-Gromoll, 1971].

The manifolds M and M' are related by admissible surgeries.

Surgery Lemma implies that it is enough to prove **Theorem A** for those manifolds which **do not admit any Ricci-flat metric.**

3. Pseudo-isotopy and psc-concordance.

Let $(M \times I, \bar{g})$ be a psc-concordance and $\bar{\alpha} : M \times I \to I$ be a slicing function. Let $\bar{C} = [\bar{g}]$ the conformal class. We use the vector field:

$$X_{ar{lpha}} = rac{
abla ar{lpha}}{|
abla ar{lpha}|_{ar{g}}^2} \in \mathfrak{X}(M imes I).$$

Let $\gamma_x(t)$ be the integral curve of the vector field $X_{\bar{\alpha}}$ such that $\gamma_x(0) = (x, 0)$.

Then $\gamma_x(1) \in M \times \{1\}$, and $d\bar{\alpha}(X_{\bar{\alpha}}) = \bar{g} \langle \nabla \bar{\alpha}, X_{\bar{\alpha}} \rangle = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We obtain a pseudo-isotopy: $\Phi:M\times I\to M\times I$ defined by the formula

$$\Phi: (x,t) \mapsto (\pi_M(\gamma_x(t)), \pi_I(\gamma_x(t))).$$

Lemma. (K. Akutagawa) Let $\overline{C} \in \mathcal{C}(M \times I)$ be a conformal class, and $\overline{\alpha} \in \mathcal{E}(M \times I)$ be a slicing function. Then there exists a unique metric $\overline{g} \in (\Phi^{-1})^* \overline{C}$ such that

$$\left\{ \begin{array}{rll} \bar{g} &=& \bar{g}|_{M_t} + dt^2 \ \mbox{on} \ \ M \times I \\ \mbox{Vol}_{g_t}(M_t) &=& \mbox{Vol}_{g_0}(M_0) \ \ \mbox{for all} \ \ t \in I \end{array} \right.$$

up to pseudo-isotopy Φ arising from $\bar{\alpha}$.

In particular, the function $(\Phi^{-1})^*\bar{\alpha}$ is just a standard projection $M \times I \to M$.

Conformal Laplacian and minimal boundary condition:

Let (W, \bar{g}) be a manifold with boundary ∂W , dim W = n.

- ▶ $A_{\bar{g}}$ is the second fundamental form along ∂W ;
- ► $H_{\bar{g}} = \operatorname{tr} A_{\bar{g}}$ is the mean curvature along ∂W ;
- ► $h_{\bar{g}} = \frac{1}{n-1} H_{\bar{g}}$ is the "normalized" mean curvature. Let $\tilde{g} = u^{\frac{4}{n-2}} \bar{g}$. Then

$$R_{\tilde{g}} = u^{-\frac{n+2}{n-2}} \left(\frac{4(n-1)}{n-2} \Delta_{\tilde{g}} u + R_{\tilde{g}} u \right) = u^{-\frac{n+2}{n-2}} L_{\tilde{g}} u$$

$$h_{\tilde{g}} = \frac{2}{n-2} u^{-\frac{m}{n-2}} \left(\partial_{\nu} u + \frac{n-2}{2} h_{\tilde{g}} u \right) = u^{-\frac{m}{n-2}} B_{\tilde{g}} u$$

• Here ∂_{ν} is the derivative with respect to outward unit normal vector field.

The minimal boundary problem:

$$\begin{cases} L_{\bar{g}}u = \frac{4(n-1)}{n-2}\Delta_{\bar{g}}u + R_{\bar{g}}u = \lambda_1 u \text{ on } W\\ B_{\bar{g}}u = \partial_{\nu}u + \frac{n-2}{2}h_{\bar{g}}u = 0 \text{ on } \partial W. \end{cases}$$

If u is the eigenfunction corresponding to the first eigenvalue, i.e. $L_{\bar{g}}u = \lambda_1 u$, and $\tilde{g} = u^{\frac{4}{n-2}}\bar{g}$, then

$$\begin{cases} R_{\tilde{g}} = u^{-\frac{n+2}{n-2}} L_{\tilde{g}} u = \lambda_1 u^{-\frac{4}{n-2}} & \text{on } W \\ \\ h_{\tilde{g}} = u^{-\frac{n}{n-2}} B_{\tilde{g}} u = 0 & \text{on } \partial W. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

4. Sufficient condition. Let $(M \times I, \bar{g})$ be a Riemannian manifold with the minimal boundary condition, and let $\bar{\alpha} : M \times I \to I$ be a slicing function. For each t < s, we define:

$$W_{t,s} = ar{lpha}^{-1}([t,s]), \quad ar{g}_{t,s} = ar{g}|_{W_{t,s}}$$

Consider the conformal Laplacian $L_{\bar{g}_{t,s}}$ on $(W_{t,s}, \bar{g}_{t,s})$. Let $\lambda_1(L_{\bar{g}_{t,s}})$ be the first eigenvalue of $L_{\bar{g}_{t,s}}$ on $(W_{t,s}, \bar{g}_{t,s})$ with the minimal boundary condition.

We obtain a function $\Lambda_{(M \times I, \overline{g}, \overline{\alpha})} : (t, s) \mapsto \lambda_1(L_{\overline{g}_{t,s}}).$

Theorem 1. Let M be a closed manifold with dim $M \ge 3$ which does not admit a Ricci-flat metric. Let $g_0, g_1 \in \mathcal{R}iem^+(M)$ and \overline{g} be a Riemannian metric on $M \times I$ with minimal boundary condition such that

$$\bar{g}|_{M \times \{0\}} = g_0, \quad \bar{g}|_{M \times \{1\}} = g_1.$$

Assume $\bar{\alpha}: M \times I \to I$ is a slicing function such that $\Lambda_{(M \times I, \bar{g}, \bar{\alpha})} \geq 0$. Then there exists a pseudo-isotopy

 $\Phi:M\times I\longrightarrow M\times I$

such that the metrics g_0 and $(\Phi|_{M \times \{1\}})^* g_1$ are psc-isotopic.

Theorem 1. Let M be a closed manifold with dim $M \ge 3$ which does not admit a Ricci-flat metric. Let $g_0, g_1 \in \mathcal{R}iem^+(M)$ and \overline{g} be a Riemannian metric on $M \times I$ with minimal boundary condition such that

$$\bar{g}|_{M \times \{0\}} = g_0, \quad \bar{g}|_{M \times \{1\}} = g_1.$$

Assume $\bar{\alpha}: M \times I \to I$ is a slicing function such that $\Lambda_{(M \times I, \bar{g}, \bar{\alpha})} \geq 0$. Then there exists a pseudo-isotopy

$$\Phi: M \times I \longrightarrow M \times I$$

such that the metrics g_0 and $(\Phi|_{M \times \{1\}})^* g_1$ are psc-isotopic.

Question: Why do we need the condition that M does not admit a Ricci-flat metric?

Assume the slicing function $\bar{\alpha}$ coincides with the projection

$$\pi_I: M \times I \to I.$$

Moreover, we assume that $\bar{g} = g_t + dt^2$ with respect to the coordinate system given by the projections

$$M \times I \xrightarrow{\pi_I} I, \quad M \times I \xrightarrow{\pi_M} M.$$

Let $L_{\tilde{g}_{t,s}}$ be the conformal Laplacian on the cylinder $(W_{t,s}, \tilde{g}_{t,s})$ with the minimal boundary condition, and $\lambda_1(L_{\tilde{g}_{t,s}})$ be the first eigenvalue of the minimal boundary problem.

For given t we denote L_{g_t} the conformal Laplacian on the slice (M_t, g_t) .

Lemma. The assumption $\lambda_1(L_{\bar{g}_{t,s}}) \ge 0$ for all t < s implies that $\lambda_1(L_{g_t}) \ge 0$ for all t.

We find positive eigenfunctions u(t) corresponding to the eigenvalues $\lambda_1(L_{g_t})$ and let $\hat{g}_t = u(t)^{\frac{4}{k-2}}g_t$. Then

$$R_{\hat{g}_t} = u(t)^{-\frac{4}{k-2}}\lambda_1(L_{g_t}) = \begin{cases} > 0 & \text{if } \lambda_1(L_{g_t}) > 0, \\ \equiv 0 & \text{if } \lambda_1(L_{g_t}) = 0. \end{cases}$$

Then we apply the Ricci flow:

Ricci flow applied to the path \hat{g}_t .

We find positive eigenfunctions u(t) corresponding to the eigenvalues $\lambda_1(L_{g_t})$ and let $\hat{g}_t = u(t)^{\frac{4}{k-2}}g_t$. Then

$$R_{\hat{g}_t} = u(t)^{-\frac{4}{k-2}}\lambda_1(L_{g_t}) = \begin{cases} > 0 & \text{if } \lambda_1(L_{g_t}) > 0, \\ \equiv 0 & \text{if } \lambda_1(L_{g_t}) = 0. \end{cases}$$

Then we apply the Ricci flow:

Ricci flow applied to the path \hat{g}_t .

▲日▼▲□▼▲□▼▲□▼ □ ののの

We recall:

$$\frac{\partial R_{\hat{g}_t(\tau)}}{\partial \tau} = \Delta R_{\hat{g}_t(\tau)} + 2|\operatorname{Ric}_{\hat{g}_t(\tau)}|^2, \quad \hat{g}_t(0) = \hat{g}_t.$$

Remark: If $\lambda_1(L_{g_t}) = 0$, we really need the condition that M does not have a Ricci flat metric.

Then if the metric \hat{g}_t is scalar flat, it cannot be Ricci-flat.

In the general case, there exists a pseudo-isotopy

$$\Phi: M \times I \longrightarrow M \times I$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

(given by the slicing function $\bar{\alpha}$) such that the metric $\Phi^* \bar{g}$ satisfies the above conditions.

5. Necessary Condition.

Theorem 2. Let M be a closed manifold with dim $M \ge 3$, and $g_0, g_1 \in \mathcal{R}iem(M)$ be two psc-concordant metrics. Then there exist

- ▶ a psc-concordance $(M \times I, \overline{g})$ between g_0 and g_1 and
- ▶ a slicing function $\bar{\alpha}: M \times I \to I$

such that $\Lambda_{(M \times I, \overline{g}, \overline{\alpha})} \geq 0$.

Sketch of the proof. Let $g_0, g_1 \in \mathcal{R}iem^+(M)$ be psc-concordant. We choose a psc-concordance $(M \times I, \bar{g})$ between g_0 and g_1 and a slicing function $\bar{\alpha} : M \times I \to I$.

The notations: $W_{t,s} = \bar{\alpha}^{-1}([t,s]), \quad \bar{g}_{t,s} = \bar{g}|_{W_{t,s}}.$

Example. We assume:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Example. We assume:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example. We assume:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Example. We assume:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Example. We assume:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recall the minimal boundary problem:

$$\begin{cases} L_{\bar{g}_{0,t}}u &= \frac{4(n-1)}{n-2}\Delta_{\bar{g}_{0,t}}u + R_{\bar{g}_{0,t}}u = \lambda_{1}u \text{ on } W_{0,t} \\ \\ B_{\bar{g}}u &= \partial_{\nu}u + \frac{n-2}{2}h_{\bar{g}_{0,t}}u = 0 \text{ on } \partial W_{0,t}. \end{cases}$$

where $\Lambda(0, t) = \lambda_1$ is the first eigenvalue of $L_{\tilde{g}_{0,t}}$ with minimal boundary conditions.

If u is the eigenfunction corresponding to the first eigenvalue, and $\tilde{g}_{0,t} = u^{\frac{4}{n-2}} \bar{g}_{0,t}$, then

$$\begin{cases} R_{\tilde{g}_{0,t}} = u^{-\frac{n+2}{n-2}} L_{\tilde{g}_{0,t}} u = \lambda_1 u^{-\frac{4}{n-2}} & \text{on } W_{0,t} \\ \\ h_{\tilde{g}_{0,t}} = u^{-\frac{n}{n-2}} B_{\tilde{g}_{0,t}} u = 0 & \text{on } \partial W_{0,t}. \end{cases}$$

There is the second boundary problem:

$$\begin{cases} L_{\bar{g}_{0,t}}u &= \frac{4(n-1)}{n-2}\Delta_{\bar{g}_{0,t}}u + R_{\bar{g}_{0,t}}u = 0 \quad \text{on } W_{0,t} \\ \\ B_{\bar{g}}u &= \partial_{\nu}u + \frac{n-2}{2}h_{\bar{g}_{0,t}}u = \mu_{1}u \quad \text{on } \partial W_{0,t}. \end{cases}$$

where μ_1 is the corresponding first eigenvalue.

If u is the eigenfunction corresponding to the first eigenvalue, and $\tilde{g}_{0,t} = u^{\frac{4}{n-2}} \bar{g}_{0,t}$, then

$$\begin{cases} R_{\tilde{g}_{0,t}} = u^{-\frac{n+2}{n-2}} L_{\tilde{g}_{0,t}} u = 0 & \text{on } W_{0,t} \\ \\ h_{\tilde{g}_{0,t}} = u^{-\frac{n}{n-2}} B_{\tilde{g}_{0,t}} u = \mu_1 u^{-\frac{2}{n-2}} & \text{on } \partial W_{0,t}. \end{cases}$$

It is well-known that λ_1 and μ_1 have the same sign. In particular, $\lambda_1 = 0$ if and only if $\mu_1 = 0$. Concerning the manifolds $(W_{0,t}, \overline{g}_{0,t})$, there exist metrics $\hat{g}_{0,t} \in [\overline{g}_{0,t}]$ such that

(1) $R_{\hat{g}_{0,t}} \equiv 0, t_0 \leq t \leq t_1,$ (2) $H_{\hat{g}_{0,t}} \equiv \begin{cases} \xi_t > 0 & \text{if } 0 < t < t_0 \\ 0 & \text{if } t = t_0, \\ \xi_t < 0 & \text{if } t_0 \leq t \leq t_1 \\ 0 & \text{if } t = t_1, \\ \xi_t > 0 & \text{if } t_1 < t \leq 1. \end{cases}$ along $\partial W_{0,t}.$

Here the functions ξ_t depend continuously on t and

$$\operatorname{sign}(\xi_t) = \operatorname{sign}(\mu_1) = \operatorname{sign}(\lambda_1)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and $\lambda_1 = \Lambda(0, t)$.

Observation. Let (V, \tilde{g}) be a manifold with boundary ∂V and with $\lambda_1 = \mu_1 = 0$ (zero conformal class), and

$$\left\{ \begin{array}{ll} R_{\tilde{g}} \equiv 0 & \text{on } V \\ H_{\tilde{g}} = f & \text{on } \partial V \text{ (where } f \neq 0) \end{array} \right.$$

Then
$$\int_{\partial V} f \, d\sigma < 0.$$

Indeed, let \bar{g} be such that $R_{\bar{g}} \equiv 0$ and $H_{\bar{g}} \equiv 0$. Then $\tilde{g} = u^{\frac{4}{n-2}}\bar{g}$, and

$$\begin{cases} \Delta_{\bar{g}} u \equiv 0 & \text{on } V \\ \partial_{\nu} u = b_n u^{\frac{n}{n-2}} f & \text{on } \partial V, \ b_n = \frac{2(n-1)}{n-2} \end{cases}$$

Integration by parts gives

$$\int_{\partial V} f \ d\sigma = b_n^{-1} \int_{\partial V} u^{-\frac{n}{n-2}} \partial_{\nu} u \ d\sigma < 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Theorem. (O. Kobayashi) Let k >> 0. There exists a metric $h^{(k)}$ on S^{n-1} (Osamu Kobayashi metric) such that

(a)
$$R_{h^{(k)}} > k$$
,
(b) $\operatorname{Vol}_{h^{(k)}}(S^{n-1}) = 1$.

For t > 0, we construct the tube $(S^{n-1} \times [0, t], h^{(k)} + dt^2)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 - のへで

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

▲ロト ▲御 ト ▲ 国 ト ▲ 国 - の Q (2)

▲ロト ▲御 ト ▲ 国 ト ▲ 国 - の Q (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 少々⊙

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()

$$(S^{n-1} \times I, h^{(k)} + dt^2)$$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

$$(S^{n-1} \times I, h^{(k)} + dt^2)$$

 $(M \times I, \bar{g})$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

THANK YOU!