Surgery, concordance and isotopy of metrics of positive scalar curvature

Boris Botvinnik
University of Oregon, Eugene, USA

December 9th, 2011
The 10th Pacific Rim Geometry Conference Osaka-Fukuoka, Japan

Notations:

- M is a closed manifold,
- $\operatorname{Riem}(M)$ is the space of all Riemannian metrics,
- R_{g} is the scalar curvature for a metric g,
- $\operatorname{Riem}^{+}(M)$ is the subspace of metrics with $R_{g}>0$,
- "psc-metric" = "metric with positive scalar curvature".

Definition 1. Psc-metrics g_{0} and g_{1} are psc-isotopic if there is a smooth path of psc-metrics $g(t), t \in[0,1]$, with $g(0)=g_{0}$ and $g(1)=g_{1}$.

Remark: In fact, g_{0} and g_{1} are psc-isotopic if and only if they belong to the same path-component in $\operatorname{Riem}^{+}(M)$.

Remark: There are many examples of manifolds with infinite $\pi_{0} \mathcal{R i e m}^{+}(M)$. In particular, $\mathbf{Z} \subset \pi_{0} \mathcal{R i e m}^{+}(M)$ if M is spin and $\operatorname{dim} M=4 k+3, k \geq 1$.

Definition 2: Psc-metrics g_{0} and g_{1} are psc-concordant if there is a psc-metric \bar{g} on $M \times I$ such that

$$
\left.\bar{g}\right|_{M \times\{i\}}=g_{i}, \quad i=0,1
$$

with $\bar{g}=g_{i}+d t^{2}$ near $M \times\{i\}, i=0,1$.
Definition 2': Psc-metrics g_{0} and g_{1} are psc-concordant if there is a psc-metric \bar{g} on $M \times I$ such that

$$
\left.\bar{g}\right|_{M \times\{i\}}=g_{i}, \quad i=0,1
$$

with minimal boundary condition i.e. the mean curvature is zero along the boundary $M \times\{i\}, i=0,1$.

Remark: Definitions 2 and Definition 2^{\prime} are equivalent. [Akutagawa-Botvinnik, 2002]

Remark: Any psc-isotopic metrics are psc-concordant.

Question: Does psc-concordance imply psc-isotopy?

Remark: Definitions 2 and Definition 2^{\prime} are equivalent. [Akutagawa-Botvinnik, 2002]

Remark: Any psc-isotopic metrics are psc-concordant.

Question: Does psc-concordance imply psc-isotopy?

My goal today: To give some answers to this Question.

Topology:
A diffeomorphism $\Phi: M \times I \rightarrow M \times I$ is a pseudo-isotopy if

$$
\left.\Phi\right|_{M \times\{0\}}=I d_{M \times\{0\}}
$$

$M \times I$
Let $\operatorname{Diff}(M \times I, M \times\{0\}) \subset \operatorname{Diff}(M \times I)$ be the group of pseudo-isotopies.

A smooth function $\bar{\alpha}: M \times I \rightarrow I$ without critical points is called a slicing function if

$$
\bar{\alpha}^{-1}(0)=M \times\{0\}, \quad \bar{\alpha}^{-1}(1)=M \times\{1\} .
$$

Let $\mathcal{E}(M \times I)$ be the space of slicing functions.

There is a natural map

$$
\sigma: \operatorname{Diff}(M \times I, M \times\{0\}) \longrightarrow \mathcal{E}(M \times I)
$$

which sends $\Phi: M \times I \longrightarrow M \times I$ to the function

$$
\sigma(\Phi)=\pi_{l} \circ \Phi: M \times I \xrightarrow{\Phi} M \times I \xrightarrow{\pi_{l}} I .
$$

Theorem.(J. Cerf) The map

$$
\sigma: \operatorname{Diff}(M \times I, M \times\{0\}) \longrightarrow \mathcal{E}(M \times I)
$$

is a homotopy equivalence.

Theorem. (J. Cerf) Let M be a closed simply connected manifold of dimension $\operatorname{dim} M \geq 5$. Then

$$
\pi_{0}(\operatorname{Diff}(M \times I, M \times\{0\})=0
$$

Remark: In particular, for simply connected manifolds of dimension at least five any two diffeomorphisms which are pseudo-isotopic, are isotopic.

Remark: The group $\pi_{0}(\operatorname{Diff}(M \times I, M \times\{0\})$ is non-trivial for most non-simply connected manifolds.

Example: (D. Ruberman, '02) There exists a simply connected 4-manifold M^{4} and psc-concordant psc-metrics g_{0} and g_{1} which are not psc-isotopic.

The obstruction comes from Seiberg-Witten invariant: in fact, it detects a gap between isotopy and pseudo-isotopy of diffeomorphisms for 4-manifolds.

In particular, the above psc-metrics g_{0} and g_{1} are isotopic in the moduli space $\mathcal{R} \operatorname{iem}^{+}(M) / \operatorname{Diff}(M)$.

Conclusion: It is reasonable to expect that psc-concordant metrics g_{0} and g_{1} are homotopic in the moduli space

$$
\mathcal{R i e m}^{+}(M) / \operatorname{Diff}(M)
$$

Theorem A. Let M be a closed compact manifold with $\operatorname{dim} M \geq 4$. Assume that $g_{0}, g_{1} \in \mathcal{R} \operatorname{iem}^{+}(M)$ are two psc-concordant metrics. Then there exists a pseudo-isotopy

$$
\Phi \in \operatorname{Diff}(M \times I, M \times\{0\}),
$$

such that the psc-metrics g_{0} and $\left(\left.\Phi\right|_{M \times\{1\}}\right)^{*} g_{1}$ are psc-isotopic.

According to J. Cerf, there is no obstruction for two pseudo-isotopic diffeomorphisms to be isotopic for simply connected manifolds of dimension at least five. Thus Theorem A implies

Theorem B. Let M be a closed simply connected manifold with $\operatorname{dim} M \geq 5$. Then two psc-metrics g_{0} and g_{1} on M are psc-isotopic if and only if the metrics g_{0}, g_{1} are psc-concordant.

We use the abbreviation " $(\mathbf{C} \Longleftrightarrow \mathbf{I})(M)$ " for the following statement:
"Let $g_{0}, g_{1} \in \mathcal{R i e m}{ }^{+}(M)$ be any psc-concordant metrics. Then there exists a pseudo-isotopy

$$
\Phi \in \operatorname{Diff}(M \times I, M \times\{0\})
$$

such that the psc-metrics

$$
g_{0} \quad \text { and } \quad\left(\left.\Phi\right|_{M \times\{1\}}\right)^{*} g_{1}
$$

are psc-isotopic."

The strategy to prove Theorem \mathbf{A}.

1. Surgery. Let M be a closed manifold, and $S^{p} \times D^{q+1} \subset M$.

We denote by M^{\prime} the manifold which is the result of the surgery along the sphere S^{p} :

$$
M^{\prime}=\left(M \backslash\left(S^{p} \times D^{q+1}\right)\right) \cup_{S^{p} \times S^{q}}\left(D^{p+1} \times S^{q}\right)
$$

Codimension of this surgery is $q+1$.

Example: surgeries $S^{k} \Longleftrightarrow S^{1} \times S^{k-1}$.

The first surgery on S^{k} to obtain $S^{1} \times S^{k-1}$

$$
S^{1} \times S^{k-1}
$$

The second surgery on $S^{1} \times S^{k-1}$ to obtain S^{k}

$$
S^{1} \times S^{k-1}
$$

The second surgery on $S^{1} \times S^{k-1}$ to obtain S^{k}

$$
S^{1} \times S^{k-1}
$$

The second surgery on $S^{1} \times S^{k-1}$ to obtain S^{k}

Definition. Let M and M^{\prime} be manifolds such that:

- M^{\prime} can be constructed out of M by a finite sequence of surgeries of codimension at least three;
- M can be constructed out of M^{\prime} by a finite sequence of surgeries of codimension at least three.
Then M and M^{\prime} are related by admissible surgeries.
Examples: $M=S^{k}$ and $M^{\prime}=S^{3} \times T^{k-3}$;
$M \cong M \# S^{k}$ and $M^{\prime}=M \#\left(S^{3} \times T^{k-3}\right)$, where $k \geq 4$.

PSC-Concordance-Isotopy Surgery Lemma. Let M and M^{\prime} be two closed manifolds related by admissible surgeries. Then the statements

$$
(\mathbf{C} \Longleftrightarrow \mathbf{I})(M) \quad \text { and } \quad(\mathbf{C} \Longleftrightarrow \mathbf{I})\left(M^{\prime}\right)
$$

are equivalent.

2. Surgery and Ricci-flatness.

Examples of manifolds which do not admit any Ricci-flat metric:

$$
S^{3}, \quad S^{3} \times T^{k-3}
$$

Observation. Let M be a closed connected manifold with $\operatorname{dim} M=k \geq 4$. Then the manifold

$$
M^{\prime}=M \#\left(S^{3} \times T^{k-3}\right)
$$

does not admit a Ricci-flat metric [Cheeger-Gromoll, 1971].

The manifolds M and M^{\prime} are related by admissible surgeries.
Surgery Lemma implies that it is enough to prove Theorem A for those manifolds which do not admit any Ricci-flat metric.

3. Pseudo-isotopy and psc-concordance.

Let $(M \times I, \bar{g})$ be a psc-concordance and $\bar{\alpha}: M \times I \rightarrow I$ be a slicing function. Let $\bar{C}=[\bar{g}]$ the conformal class. We use the vector field:

$$
X_{\bar{\alpha}}=\frac{\nabla \bar{\alpha}}{|\nabla \bar{\alpha}|_{\bar{g}}^{2}} \in \mathfrak{X}(M \times I) .
$$

Let $\gamma_{x}(t)$ be the integral curve of the vector field $X_{\bar{\alpha}}$ such that $\gamma_{x}(0)=(x, 0)$.

Then $\gamma_{x}(1) \in M \times\{1\}$, and $d \bar{\alpha}\left(X_{\bar{\alpha}}\right)=\bar{g}\left\langle\nabla \bar{\alpha}, X_{\bar{\alpha}}\right\rangle=1$.

We obtain a pseudo-isotopy: $\Phi: M \times I \rightarrow M \times I$ defined by the formula

$$
\Phi:(x, t) \mapsto\left(\pi_{M}\left(\gamma_{x}(t)\right), \pi_{I}\left(\gamma_{x}(t)\right)\right)
$$

Lemma. (K. Akutagawa) Let $\bar{C} \in \mathcal{C}(M \times I)$ be a conformal class, and $\bar{\alpha} \in \mathcal{E}(M \times I)$ be a slicing function. Then there exists a unique metric $\bar{g} \in\left(\Phi^{-1}\right)^{*} \bar{C}$ such that

$$
\left\{\begin{aligned}
\bar{g} & =\left.\bar{g}\right|_{M_{t}}+d t^{2} \text { on } M \times I \\
\operatorname{Vol}_{g_{t}}\left(M_{t}\right) & =\operatorname{Vol}_{g_{0}}\left(M_{0}\right) \text { for all } t \in I
\end{aligned}\right.
$$

up to pseudo-isotopy Φ arising from $\bar{\alpha}$.
In particular, the function $\left(\Phi^{-1}\right)^{*} \bar{\alpha}$ is just a standard projection $M \times I \rightarrow M$.

Conformal Laplacian and minimal boundary condition:
Let (W, \bar{g}) be a manifold with boundary $\partial W, \operatorname{dim} W=n$.

- $A_{\bar{g}}$ is the second fundamental form along ∂W;
- $H_{\bar{g}}=\operatorname{tr} A_{\bar{g}}$ is the mean curvature along ∂W;
- $h_{\bar{g}}=\frac{1}{n-1} H_{\bar{g}}$ is the "normalized" mean curvature.

Let $\tilde{g}=u^{\frac{4}{n-2}} \bar{g}$. Then

$$
\begin{aligned}
& h_{\tilde{g}}=\frac{2}{n-2} u^{-\frac{n}{n-2}}\left(\partial_{\nu} u+\frac{n-2}{2} h_{\bar{g}} u\right)=u^{-\frac{n}{n-2}} B_{\bar{g}} u
\end{aligned}
$$

- Here ∂_{ν} is the derivative with respect to outward unit normal vector field.

The minimal boundary problem:

$$
\begin{cases}L_{\bar{g}} u=\frac{4(n-1)}{n-2} \Delta_{\bar{g}} u+R_{\bar{g}} u=\lambda_{1} u & \text { on } W \\ B_{\bar{g}} u=\partial_{\nu} u+\frac{n-2}{2} h_{\bar{g}} u=0 & \text { on } \partial W .\end{cases}
$$

If u is the eigenfunction corresponding to the first eigenvalue, i.e. $L_{\bar{g}} u=\lambda_{1} u$, and $\tilde{g}=u^{\frac{4}{n-2}} \bar{g}$, then

$$
\begin{cases}R_{\tilde{g}}=u^{-\frac{n+2}{n-2}} L_{\bar{g}} u=\lambda_{1} u^{-\frac{4}{n-2}} & \text { on } W \\ h_{\tilde{g}}=u^{-\frac{n}{n-2}} B_{\bar{g}} u=0 & \text { on } \partial W .\end{cases}
$$

4. Sufficient condition. Let $(M \times I, \bar{g})$ be a Riemannian manifold with the minimal boundary condition, and let $\bar{\alpha}: M \times I \rightarrow I$ be a slicing function. For each $t<s$, we define:

$$
W_{t, s}=\bar{\alpha}^{-1}([t, s]), \quad \bar{g}_{t, s}=\left.\bar{g}\right|_{W_{t, s}}
$$

Consider the conformal Laplacian $L_{\bar{g} t, s}$ on $\left(W_{t, s}, \bar{g}_{t, s}\right)$. Let $\lambda_{1}\left(L_{\bar{g}_{t, s}}\right)$ be the first eigenvalue of $L_{\bar{g} t, s}$ on $\left(W_{t, s}, \bar{g}_{t, s}\right)$ with the minimal boundary condition.
We obtain a function $\Lambda_{(M \times I, \bar{g}, \bar{\alpha})}:(t, s) \mapsto \lambda_{1}\left(L_{\bar{g} t, s}\right)$.

Theorem 1. Let M be a closed manifold with $\operatorname{dim} M \geq 3$ which does not admit a Ricci-flat metric. Let $g_{0}, g_{1} \in \mathcal{R i e m}^{+}(M)$ and \bar{g} be a Riemannian metric on $M \times I$ with minimal boundary condition such that

$$
\left.\bar{g}\right|_{M \times\{0\}}=g_{0},\left.\quad \bar{g}\right|_{M \times\{1\}}=g_{1} .
$$

Assume $\bar{\alpha}: M \times I \rightarrow I$ is a slicing function such that $\Lambda_{(M \times I, \bar{g}, \bar{\alpha})} \geq 0$. Then there exists a pseudo-isotopy

$$
\Phi: M \times I \longrightarrow M \times I
$$

such that the metrics g_{0} and $\left(\left.\Phi\right|_{M \times\{1\}}\right)^{*} g_{1}$ are psc-isotopic.

Theorem 1. Let M be a closed manifold with $\operatorname{dim} M \geq 3$ which does not admit a Ricci-flat metric. Let $g_{0}, g_{1} \in \mathcal{R i e m}^{+}(M)$ and \bar{g} be a Riemannian metric on $M \times I$ with minimal boundary condition such that

$$
\left.\bar{g}\right|_{M \times\{0\}}=g_{0},\left.\quad \bar{g}\right|_{M \times\{1\}}=g_{1} .
$$

Assume $\bar{\alpha}: M \times I \rightarrow I$ is a slicing function such that $\Lambda_{(M \times I, \bar{g}, \bar{\alpha})} \geq 0$. Then there exists a pseudo-isotopy

$$
\Phi: M \times I \longrightarrow M \times I
$$

such that the metrics g_{0} and $\left(\left.\Phi\right|_{M \times\{1\}}\right)^{*} g_{1}$ are psc-isotopic.

Question: Why do we need the condition that M does not admit a Ricci-flat metric?

Assume the slicing function $\bar{\alpha}$ coincides with the projection

$$
\pi_{I}: M \times I \rightarrow I
$$

Moreover, we assume that $\bar{g}=g_{t}+d t^{2}$ with respect to the coordinate system given by the projections

$$
M \times I \xrightarrow{\pi_{l}} I, \quad M \times I \xrightarrow{\pi_{M}} M .
$$

Let $L_{\bar{g}_{t, s}}$ be the conformal Laplacian on the cylinder ($W_{t, s}, \bar{g}_{t, s}$) with the minimal boundary condition, and $\lambda_{1}\left(L_{\bar{g}_{t, s}}\right)$ be the first eigenvalue of the minimal boundary problem.

For given t we denote $L_{g_{t}}$ the conformal Laplacian on the slice $\left(M_{t}, g_{t}\right)$.

Lemma. The assumption $\lambda_{1}\left(L_{\bar{g}_{t, s}}\right) \geq 0$ for all $t<s$ implies that $\lambda_{1}\left(L_{g_{t}}\right) \geq 0$ for all t.

We find positive eigenfunctions $u(t)$ corresponding to the eigenvalues $\lambda_{1}\left(L_{g_{t}}\right)$ and let $\hat{g}_{t}=u(t)^{\frac{4}{k-2}} g_{t}$. Then

$$
R_{\hat{g}_{t}}=u(t)^{-\frac{4}{k-2}} \lambda_{1}\left(L_{g_{t}}\right)= \begin{cases}>0 & \text { if } \lambda_{1}\left(L_{g_{t}}\right)>0 \\ \equiv 0 & \text { if } \lambda_{1}\left(L_{g_{t}}\right)=0\end{cases}
$$

Then we apply the Ricci flow:

Ricci flow applied to the path \hat{g}_{t}.

We find positive eigenfunctions $u(t)$ corresponding to the eigenvalues $\lambda_{1}\left(L_{g_{t}}\right)$ and let $\hat{g}_{t}=u(t)^{\frac{4}{k-2}} g_{t}$. Then

$$
R_{\hat{g}_{t}}=u(t)^{-\frac{4}{k-2}} \lambda_{1}\left(L_{g_{t}}\right)= \begin{cases}>0 & \text { if } \lambda_{1}\left(L_{g_{t}}\right)>0 \\ \equiv 0 & \text { if } \lambda_{1}\left(L_{g_{t}}\right)=0\end{cases}
$$

Then we apply the Ricci flow:

Ricci flow applied to the path \hat{g}_{t}.

We recall:

$$
\frac{\partial R_{\hat{\mathrm{g}}_{t}(\tau)}}{\partial \tau}=\Delta R_{\hat{\mathrm{g}}_{t}(\tau)}+2\left|\operatorname{Ric}_{\hat{\mathrm{g}}_{\mathrm{t}}(\tau)}\right|^{2}, \quad \hat{g}_{t}(0)=\hat{g}_{t}
$$

Remark: If $\lambda_{1}\left(L_{g_{t}}\right)=0$, we really need the condition that M does not have a Ricci flat metric.

Then if the metric \hat{g}_{t} is scalar flat, it cannot be Ricci-flat.

In the general case, there exists a pseudo-isotopy

$$
\Phi: M \times I \longrightarrow M \times I
$$

(given by the slicing function $\bar{\alpha}$) such that the metric $\Phi^{*} \bar{g}$ satisfies the above conditions.

5. Necessary Condition.

Theorem 2. Let M be a closed manifold with $\operatorname{dim} M \geq 3$, and $g_{0}, g_{1} \in \operatorname{Riem}(M)$ be two psc-concordant metrics. Then there exist

- a psc-concordance $(M \times I, \bar{g})$ between g_{0} and g_{1} and
- a slicing function $\bar{\alpha}: M \times I \rightarrow I$
such that $\Lambda_{(M \times I, \bar{g}, \bar{\alpha})} \geq 0$.

Sketch of the proof. Let $g_{0}, g_{1} \in \operatorname{Riem}^{+}(M)$ be psc-concordant. We choose a psc-concordance $(M \times I, \bar{g})$ between g_{0} and g_{1} and a slicing function $\bar{\alpha}: M \times I \rightarrow I$.

The notations: $W_{t, s}=\bar{\alpha}^{-1}([t, s]), \quad \bar{g}_{t, s}=\bar{g} \mid W_{t, s}$.

Key construction: a bypass surgery.

Example. We assume:

Recall the minimal boundary problem:

$$
\begin{cases}L_{\bar{g}_{0, t}} u=\frac{4(n-1)}{n-2} \Delta_{\bar{g}_{0, t}} u+R_{\bar{g}_{0, t}} u=\lambda_{1} u & \text { on } W_{0, t} \\ B_{\bar{g}} u=\partial_{\nu} u+\frac{n-2}{2} h_{\bar{g}_{0, t}} u=0 & \text { on } \partial W_{0, t}\end{cases}
$$

where $\Lambda(0, t)=\lambda_{1}$ is the first eigenvalue of $L_{\bar{g}_{0, t}}$ with minimal boundary conditions.

If u is the eigenfunction corresponding to the first eigenvalue, and $\tilde{g}_{0, t}=u^{\frac{4}{n-2}} \bar{g}_{0, t}$, then

$$
\begin{cases}R_{\tilde{g}_{0, t}}=u^{-\frac{n+2}{n-2}} L_{\bar{g}_{0, t}} u=\lambda_{1} u^{-\frac{4}{n-2}} & \text { on } W_{0, t} \\ h_{\tilde{g}_{0, t}}=u^{-\frac{n}{n-2}} B_{\bar{g}_{0, t}} u=0 & \text { on } \partial W_{0, t}\end{cases}
$$

There is the second boundary problem:

$$
\begin{cases}L_{\bar{g}_{0, t}} u=\frac{4(n-1)}{n-2} \Delta_{\bar{g}_{0, t}} u+R_{\bar{g}_{0, t}} u=0 & \text { on } W_{0, t} \\ B_{\bar{g}} u=\partial_{\nu} u+\frac{n-2}{2} h_{\bar{g}_{0, t}} u=\mu_{1} u \quad \text { on } \partial W_{0, t}\end{cases}
$$

where μ_{1} is the corresponding first eigenvalue.

If u is the eigenfunction corresponding to the first eigenvalue, and $\tilde{g}_{0, t}=u^{\frac{4}{n-2}} \bar{g}_{0, t}$, then

$$
\begin{cases}R_{\tilde{g}_{0, t}}=u^{-\frac{n+2}{n-2}} L_{\bar{g}_{0, t}} u=0 & \text { on } W_{0, t} \\ h_{\tilde{g}_{0, t}}=u^{-\frac{n}{n-2}} B_{\bar{g}_{0, t}} u=\mu_{1} u^{-\frac{2}{n-2}} & \text { on } \partial W_{0, t}\end{cases}
$$

It is well-known that λ_{1} and μ_{1} have the same sign. In particular, $\lambda_{1}=0$ if and only if $\mu_{1}=0$.

Concerning the manifolds ($W_{0, t}, \bar{g}_{0, t}$), there exist metrics $\hat{g}_{0, t} \in\left[\bar{g}_{0, t}\right]$ such that
(1) $R_{\hat{g}_{0, t}} \equiv 0, t_{0} \leq t \leq t_{1}$,
(2) $H_{\hat{\mathrm{g}} 0, t} \equiv\left\{\begin{array}{cl}\xi_{t}>0 & \text { if } 0<t<t_{0} \\ 0 & \text { if } t=t_{0}, \\ \xi_{t}<0 & \text { if } t_{0} \leq t \leq t_{1} \\ 0 & \text { if } t=t_{1}, \\ \xi_{t}>0 & \text { if } t_{1}<t \leq 1 .\end{array}\right\}$ along $\partial W_{0, t}$.

Here the functions ξ_{t} depend continuously on t and

$$
\operatorname{sign}\left(\xi_{t}\right)=\operatorname{sign}\left(\mu_{1}\right)=\operatorname{sign}\left(\lambda_{1}\right)
$$

and $\lambda_{1}=\Lambda(0, t)$.

Observation. Let (V, \tilde{g}) be a manifold with boundary ∂V and with $\lambda_{1}=\mu_{1}=0$ (zero conformal class), and

$$
\begin{cases}R_{\tilde{g}} \equiv 0 & \text { on } V \\ H_{\tilde{g}}=f & \text { on } \partial V(\text { where } f \not \equiv 0)\end{cases}
$$

Then $\int_{\partial V} f d \sigma<0$.
Indeed, let \bar{g} be such that $R_{\bar{g}} \equiv 0$ and $H_{\bar{g}} \equiv 0$. Then $\tilde{g}=u^{\frac{4}{n-2}} \bar{g}$, and

$$
\begin{cases}\Delta_{\bar{g}} u \equiv 0 & \text { on } V \\ \partial_{\nu} u=b_{n} u^{\frac{n}{n-2}} f & \text { on } \partial V, b_{n}=\frac{2(n-1)}{n-2}\end{cases}
$$

Integration by parts gives

$$
\int_{\partial V} f d \sigma=b_{n}^{-1} \int_{\partial V} u^{-\frac{n}{n-2}} \partial_{\nu} u d \sigma<0
$$

Theorem. (O. Kobayashi) Let $k \gg 0$. There exists a metric $h^{(k)}$ on S^{n-1} (Osamu Kobayashi metric) such that
(a) $R_{h^{(k)}}>k$,
(b) $\operatorname{Vol}_{h^{(k)}}\left(S^{n-1}\right)=1$.

For $t>0$, we construct the tube $\left(S^{n-1} \times[0, t], h^{(k)}+d t^{2}\right)$.
Curose k such that $F_{t}>\mid \xi \quad\left(S^{n-1} \times[0, t], \tilde{h}_{0, t}\right) \quad \tilde{h}_{0, t} \in\left[h^{(k)}+d t^{2}\right]$
Choose k such that $F_{t}>\left|\xi_{t}\right|$

$$
H_{\tilde{h}_{0, t}}=F_{t \rightarrow}\left(\begin{array}{ll}
& \\
R_{\tilde{h}_{0, t}} \equiv 0 & \\
& \\
& \\
\end{array}\right.
$$

Assume that $\left(\widehat{W}_{0, t}, \widehat{g}_{0, t}\right)$ has zero conformal class. Then $\int_{\partial \widehat{W}_{0, t}} \widehat{H}_{0, t} d \sigma_{0, t}<0$; this fails since $F_{t}>\left|\xi_{t}\right|$. Thus $\left(\widehat{W}_{0, t}, \widehat{g}_{0, t}\right)$ cannot be of zero conformal class.

Assume that $\left(\widehat{W}_{0, t}, \widehat{g}_{0, t}\right)$ has zero conformal class. Then $\int_{\partial \widehat{W}_{0, t}} \widehat{H}_{0, t} d \sigma_{0, t}<0$; this fails since $F_{t}>\left|\xi_{t}\right|$. Thus $\left(\widehat{W}_{0, t}, \widehat{g}_{0, t}\right)$ cannot be of zero conformal class.

Assume that $\left(\widehat{W}_{0, t}, \widehat{g}_{0, t}\right)$ has zero conformal class. Then $\int_{\partial \widehat{W}_{0, t}} \widehat{H}_{0, t} d \sigma_{0, t}<0$; this fails since $F_{t}>\left|\xi_{t}\right|$. Thus ($\widehat{W}_{0, t}, \widehat{g}_{0, t}$) cannot be of zero conformal class.

Assume that $\left(\widehat{W}_{0, t}, \widehat{g}_{0, t}\right)$ has zero conformal class. Then $\int_{\partial \widehat{W}_{0, t}} \widehat{H}_{0, t} d \sigma_{0, t}<0$; this fails since $F_{t}>\left|\xi_{t}\right|$. Thus ($\widehat{W}_{0, t}, \widehat{g}_{0, t}$) cannot be of zero conformal class.

Assume that $\left(\widehat{W}_{0, t}, \widehat{g}_{0, t}\right)$ has zero conformal class. Then $\int_{\partial \widehat{W}_{0, t}} \widehat{H}_{0, t} d \sigma_{0, t}<0$; this fails since $F_{t}>\left|\xi_{t}\right|$. Thus ($\widehat{W}_{0, t}, \widehat{g}_{0, t}$) cannot be of zero conformal class.

A bypass surgery:

$$
\left(S^{n-1} \times I, h^{(k)}+d t^{2}\right)
$$

A bypass surgery:

A bypass surgery:

A bypass surgery:

$$
\left(S^{n-1} \times I, h^{(k)}+d t^{2}\right)
$$

A bypass surgery:

$$
\left(S^{n-1} \times I, h^{(k)}+d t^{2}\right)
$$

There is another bypass surgery:

There is another bypass surgery:

There is another bypass surgery:

$$
\left(S^{n-1} \times I, h^{(k)}+d t^{2}\right)
$$

There is another bypass surgery:

$$
\left(S^{n-1} \times I, h^{(k)}+d t^{2}\right)
$$

THANK YOU!

