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Notations:

M is a closed manifold,

Riem(M) is the space of all Riemannian metrics,
R is the scalar curvature for a metric g,

Riem™ (M) is the subspace of metrics with Ry > 0,

“psc-metric” = “metric with positive scalar curvature”.
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Definition 1. Psc-metrics gy and g; are psc-isotopic if there is
a smooth path of psc-metrics g(t), t € [0, 1], with g(0) = go and
g(1) =a.

Remark: In fact, go and gy are psc-isotopic if and only if they
belong to the same path-component in Riem™(M).



Remark: There are many examples of manifolds with infinite
moRiem™*(M). In particular, Z C moRiem™ (M) if M is spin and
dmM =4k +3, k> 1.

Definition 2: Psc-metrics gy and gy are psc-concordant if there
is a psc-metric g on M x [ such that

glux{y =&, =01
with g = g; + dt? near M x {i}, i =0, 1.

Definition 2': Psc-metrics gg and g1 are psc-concordant if
there is a psc-metric g on M x [ such that

Elmxgy =&, =01

with minimal boundary condition i.e. the mean curvature is
zero along the boundary M x {i}, i =0, 1.



Remark: Definitions 2 and Definition 2’ are equivalent.

[Akutagawa-Botvinnik, 2002]

Remark: Any psc-isotopic metrics are psc-concordant.

Question: Does psc-concordance imply psc-isotopy?




Remark: Definitions 2 and Definition 2’ are equivalent.

[Akutagawa-Botvinnik, 2002]

Remark: Any psc-isotopic metrics are psc-concordant.

Question: Does psc-concordance imply psc-isotopy?

My goal today: To give some answers to this Question.




Topology:
A diffeomorphism ® : M x | — M x [ is a pseudo-isotopy if
P pmxqoy = ldmx o} O M x| |

| &

Let Diff(M x I, M x {0}) C Diff(M x ) be the group of
pseudo-isotopies.

A smooth function @ : M x | — | without critical points is
called a slicing function if

al(0)=Mx {0}, al(1)=Mx{1}.

Let £(M x ) be the space of slicing functions.



There is a natural map
o Diff(M x I,M x {0}) — E(M x I)
which sends ® : M x | — M x [ to the function

(@) =mod: Mx - Mx 5.

Theorem.(J. Cerf) The map
o:Diff (M x I,M x {0}) — E(M x I)

is a homotopy equivalence.



Theorem. (J. Cerf) Let M be a closed simply connected
manifold of dimension dim M > 5. Then

mo(Diff(M x I, M x {0}) = 0.

Remark: In particular, for simply connected manifolds of
dimension at least five any two diffeomorphisms which are
pseudo-isotopic, are isotopic.

Remark: The group mo(Diff(M x I, M x {0}) is non-trivial for
most non-simply connected manifolds.



Example: (D. Ruberman, '02) There exists a simply connected
4-manifold M* and psc-concordant psc-metrics gg and g; which
are not psc-isotopic.

The obstruction comes from Seiberg-Witten invariant: in fact,
it detects a gap between isotopy and pseudo-isotopy of
diffeomorphisms for 4-manifolds.

In particular, the above psc-metrics gy and gy are isotopic in

the moduli space Riem™(M)/Diff(M).

Conclusion: It is reasonable to expect that psc-concordant
metrics go and gy are homotopic in the moduli space

Riem™ (M) /Diff(M).



Theorem A. Let M be a closed compact manifold with
dim M > 4. Assume that go, g1 € Riem™ (M) are two
psc-concordant metrics. Then there exists a pseudo-isotopy

® € Diff(M x I, M x {0}),

such that the psc-metrics go and (®[y«{1})*8g1 are psc-isotopic.

According to J. Cerf, there is no obstruction for two
pseudo-isotopic diffeomorphisms to be isotopic for simply
connected manifolds of dimension at least five.

Thus Theorem A implies

Theorem B. Let M be a closed simply connected manifold with
dim M > 5. Then two psc-metrics go and g1 on M are
psc-isotopic if and only if the metrics gy, g1 are psc-concordant.



We use the abbreviation “(C<=1)(M)” for the following
statement:

“Let go,g1 € Riem* (M) be any psc-concordant metrics.
Then there exists a pseudo-isotopy

® € Diff(M x I, M x {0})
such that the psc-metrics
g and (®|y(1y)7a

are psc-isotopic.”



The strategy to prove Theorem A.
1. Surgery. Let M be a closed manifold, and SP x D9t c M.

We denote by M’ the manifold which is the result of the surgery
along the sphere SP:

M = (M\ (SP x DT™)) Uspxsa (DPT x S9).

Codimension of this surgery is q + 1.
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Example: surgeries SK «— S x Sk71,
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St x Dk

51 X Sk—l

The second surgery on S* x SK=1 to obtain Sk



St x Dk

Sk

The second surgery on St x S¥~1 to obtain S¥



St x Dk

Sk

The second surgery on S* x SK=1 to obtain Sk



Definition. Let M and M’ be manifolds such that:

» M’ can be constructed out of M by a finite sequence of
surgeries of codimension at least three;

» M can be constructed out of M’ by a finite sequence of
surgeries of codimension at least three.

Then M and M’ are related by admissible surgeries.

Examples: M = Sk and M’ = §3 x T3,
M = M#Sk and M/ = M#(S3 X Tk—3)7 Where k 2 4

PSC-Concordance-lsotopy Surgery Lemma. Let M and M’ be
two closed manifolds related by admissible surgeries. Then the

statements
(C=1)(M) and (C=l)(M)

are equivalent.
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Proof of Surgery Lemma
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2. Surgery and Ricci-flatness.

Examples of manifolds which do not admit any Ricci-flat

metric:
53 53 % Tk—3

Observation. Let M be a closed connected manifold with
dimM = k > 4. Then the manifold

M’ = M#(S% x TF73)
does not admit a Ricci-flat metric [Cheeger-Gromoll, 1971].

The manifolds M and M’ are related by admissible surgeries.

Surgery Lemma implies that it is enough to prove Theorem A
for those manifolds which do not admit any Ricci-flat metric.



3. Pseudo-isotopy and psc-concordance.

Let (M x 1,g) be a psc-concordance and & : M x | — | be a
slicing function. Let C = [g] the conformal class. We use the

vector field: V5
19
X@ € X(M x
\Va|2 ( -

Let yx(t) be the integral curve of the vector field X5 such that
7%(0) = (x,0).

Then 7x(1) € M x {1}, and da(X5) =g (Va, Xz) =1.



We obtain a pseudo-isotopy: ® : M x | — M x | defined by the
formula

O (x,t) = (mm((t)), T (7x(t))).

Lemma. (K. Akutagawa) Let C € C(M x I) be a conformal
class, and & € £(M x [) be a slicing function. Then there exists
a unique metric g € (¢71)*C such that

E = Elw+d2 on MxI
Volg, (My) = Volg,(Mp) forall tel

up to pseudo-isotopy & arising from a.

In particular, the function (®~1)*a is just a standard projection
MxI— M.



Conformal Laplacian and minimal boundary condition:

Let (W, g) be a manifold with boundary W, dim W = n.

> Az is the second fundamental form along OW;
> Hz = tr Az is the mean curvature along OW;

> hy = ﬁHg is the “normalized” mean curvature.

4

Let g = un—2g. Then

Rg = U_Z_ﬁ (4(:__21) Agu + RgU) = u gig Lgu
hg = nE2 U_"Tn2 (&,u —+ ngz hgu) — U_ ,-,22 Bgu

» Here 0, is the derivative with respect to outward unit
normal vector field.



The minimal boundary problem:

Lgu = MDAy 4 Rgu=XMu on W
Bgu = 8,,u+"52hgu:0 on OW.

If u is the eigenfunction corresponding to the first eigenvalue,
4
ie. Lzu= A\u, and g = un—2g, then

_ni+2 __4
Ry = v »2lgu=Xu 2 onW

hg = u "2Bzu=0 on OW.




4. Sufficient condition. Let (M x I, g) be a Riemannian
manifold with the minimal boundary condition, and let
@ : M x| — [ be a slicing function. For each t < s, we define:

Wt75 = O_‘_l([t’s])v 8ts = g|Wt,s

Consider the conformal Laplacian Lg, , on (W, 8ts). Let
A1(Lg. ) be the first eigenvalue of Lz, on (Wi, &r,s) with the
minimal boundary condition.

We obtain a function A(yxsz.a) : (t,5) — M(Lg,.)-



Theorem 1. Let M be a closed manifold with dim M > 3 which
does not admit a Ricci-flat metric. Let g, g1 € Riem™ (M) and
g be a Riemannian metric on M x [ with minimal boundary
condition such that

Elmxioy = 80, Elmxq) = &1-

Assume & : M x | — | is a slicing function such that
Nmx1,g,a) = 0. Then there exists a pseudo-isotopy

O Mx| —Mx|

such that the metrics go and (®|px1})* 81 are psc-isotopic.



Theorem 1. Let M be a closed manifold with dim M > 3 which
does not admit a Ricci-flat metric. Let g, g1 € Riem™ (M) and
g be a Riemannian metric on M x [ with minimal boundary
condition such that

Elmxioy = 80, Elmxq) = &1-

Assume & : M x | — [ is a slicing function such that
Nmx1,g,a) = 0. Then there exists a pseudo-isotopy

O Mx| —Mx|

such that the metrics gp and (® *g1 are psc-isotopic.
Mx{1}) &

Question: Why do we need the condition that M does not
admit a Ricci-flat metric?



Assume the slicing function & coincides with the projection
T Mx | — .

Moreover, we assume that g = g; + dt? with respect to the
coordinate system given by the projections

Mx 251, MxI 4

Let Lg, ., be the conformal Laplacian on the cylinder (W, s, &t,s)
with the minimal boundary condition, and A1(Lg,,) be the first
eigenvalue of the minimal boundary problem.

For given t we denote L,, the conformal Laplacian on the slice
(Mt gt).

Lemma. The assumption A\1(Lg,,) > 0 for all t < s implies that
A(Lg,) > 0 for all t.



We find positive eigenfunctions u(t) corresponding to the

eigenvalues Ai(Lg,) and let g = u(t)ﬁgt. Then

o . [ >0 if M\(Lg,) >0,
Ra =) on(ta) = { 29 (i) 20

Then we apply the Ricci flow:

R§>0 \Q“;,_O

Ricci flow applied to the path g;.



We find positive eigenfunctions u(t) corresponding to the

eigenvalues Ai(Lg,) and let g = u(t)ﬁgt. Then

o . [ >0 if M\(Lg,) >0,
Ra =) on(ta) = { 29 (i) 20

Then we apply the Ricci flow:

R,

5:(ro) > 0 everywhere

R§t>0 K

Ricci flow applied to the path g;.



We recall:

IRz, (r)

or

= ARg(r) + 2| Ricg () P, 8:(0) = &:.

Remark: If (L, ) = 0, we really need the condition that M
does not have a Ricci flat metric.

Then if the metric g; is scalar flat, it cannot be Ricci-flat.

In the general case, there exists a pseudo-isotopy
b Mx|—Mx|

(given by the slicing function &) such that the metric ®*g
satisfies the above conditions.



5. Necessary Condition.

Theorem 2. Let M be a closed manifold with dim M > 3, and
80,81 € Riem(M) be two psc-concordant metrics. Then there
exist

» a psc-concordance (M X I, g) between gy and gy and
» a slicing function & : M x | — |
such that A(yxsz.a) > 0.

Sketch of the proof. Let gy, g1 € Riem™ (M) be psc-concordant.
We choose a psc-concordance (M x I, g) between gy and gy and
a slicing function @ : M x | — |I.

The notations: W; s = O_z_l([t75]), 8ts = g‘Wt,s'



Key construction: a bypass surgery.

Example. We assume:
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Key construction: a bypass surgery.

Example. We assume:

consider the manifolds

(Wo,t, &o,t)
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consider the manifolds
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Key construction: a bypass surgery.

Example. We assume:




Recall the minimal boundary problem:

LE’o,:U = 4(,,n__21)Ag0,tU + RgO,tu = \Mu on Wo,f
Bzu = 8,,u+"%2hgo’tu:0 on OWp¢.

where A0, t) = Ay is the first eigenvalue of Lg,, with minimal
boundary conditions.

If u is the eigenfunction corresponding to the first eigenvalue,
4
and Zo,r = un—2gp ¢, then

n+2

_ _ 4
Rgo,f = u "—2Lg07tu:)\1u n—2  on Wo

__n_
th,t = y n-2 Bgo’tu:O on OWp¢.



There is the second boundary problem:

4("_21) Ago’tu + Réo,tu =0 on Wp:

Lgo,tu = n—
Bsu = 0O,u+ ”%2hgo7tu = piu on OW.¢.

where 1 is the corresponding first eigenvalue.

If u is the eigenfunction corresponding to the first eigenvalue,
4
and 8o+ = un—2gp ¢, then

_nt2
Rgo,t = u "*QLEOJU:O on WO,t

—_n_ 2
hg, = u "2Bg,u=piu 2 on OWp,.

It is well-known that )\; and p; have the same sign.
In particular, \; = 0 if and only if u; = 0.



Concerning the manifolds (W ¢, o +), there exist metrics
8ot € [EOJ] such that

(1) Rgp, =0, to <t <,

>0 if0<t< iy

0 if t = tp,
(2) H§0,t = <0 iftp<t<t along 8W07t.
0 if t =ty

& >0 ifp <t <1,
Here the functions &; depend continuously on t and
sign(&:) = sign(p1) = sign(A1)
and A1 = A(0, t).



Observation. Let (V,g) be a manifold with boundary 0V and
with A\; = 1 = 0 (zero conformal class), and

Rz =0 on V
Hz = f on 0V (where f #0)

Then/ f do < 0.
ov

4

Indeed, let g be such that Rz =0 and Hz = 0. Then g = ur—2g,
and

Azu=0 on V
dyu = byur2f ondV, b, = A1)

Integration by parts gives

/ f do = bn—l/ u"m28,u do < 0.
ov ov



Theorem. (O. Kobayashi) Let k >> 0. There exists a metric
h(k) on §"1 (Osamu Kobayashi metric) such that

(a) Rh(k) > k7
(b) Volh(k)(S”_l) =1.

For t > 0, we construct the tube (S~ x [0, t], h(¥) + dt?).

("1 % [0,t],ho)  hor e [A) + di?]
Choose k such that F; > |&] - -

Hi, .= Fe—~




("1 x[0,t], hot)  ho. € [ 4 di?]

R, =04/ Ry

Il
O«A«-\

Hﬂo,r: Ft—> 0,t ; ; 80,t
— Ft > |£t|
to
=0
gO t = gf go ¢

(Wo,t, Bo,t) Wo £.80,6) = (Wo, (5"~ 1 x [0, t]).80,e#ho.¢)

Assume that (l//l\/o7t, 8o.t) has zero conformal class. Then /A I/-\Io,tdao7t < 0;
. Wt
this fails since F; > [&|. Thus (Wo +, 80,+) cannot be of zero conformal class.



("1 x[0,t], hot)  hoy € [AK) 4 di?]

R, =04/ Ry

Hﬂo,r: Ft—> 0,t ; ; 80,t
— Ft > |£t|
to
=0
gO t = gf go ¢

(Wo,t, Bo,t) Wo £.80,6) = (Wo (5"~ 1 x [0, t]).80,é#ho.¢)

Assume that (l//l\/o7t, 8o.t) has zero conformal class. Then /A I/-\Io,tdao7t < 0;
. Wt
this fails since F; > [&|. Thus (Wo +, 80,+) cannot be of zero conformal class.



("1 x[0,t], hot)  ho. € [ 4 di?]

Ry,

0,t

Ft—>

ho,:—

0
Hf;’o,z =& — Réo’t -
\\‘\

(W, &o.¢) (WO,taEO,t) =(Wo,s# (5" x [0, t]) &o.#ho.¢)

Assume that (Wo7t, 8o.¢) has zero conformal class. Then /A I/-\Io7tdao7t < 0;
. Wt
this fails since F; > [&|. Thus (Wo +, 80,+) cannot be of zero conformal class.



("1 x[0,t], hot)  ho. € [ 4 di?]

Ry,

0,t

Ft—>

ho,:—

(W, &o.¢) (WO,taEO,t) =(Wo,s# (5" x [0, t]) &o.#ho.¢)

Assume that (Wo7t, 8o.¢) has zero conformal class. Then /A I/-\Io7tdao7t < 0;
. Wt
this fails since F; > [&|. Thus (Wo +, 80,+) cannot be of zero conformal class.



(S~ x [0, t] hOt ho.c € [h9) 4 dt?]

Hy, = Fesl( e =0 %
0
Hé’o,z = gf go £ O

(Wo,t, Bo,t) (Wo £.80,6) = (Wo, (5"~ 1 x [0, t]).80,e#ho.¢)

Assume that (Wo,t, 8o.¢) has zero conformal class. Then /A I/-\Io7tdao,t < 0;
. Wt
this fails since F; > [&|. Thus (Wo +, 80,+) cannot be of zero conformal class.



A bypass surgery:

("1 x [, htW) + dr?)
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A bypass surgery:

("1 x [, htW) + dr?)

to t




(5'7—1 % /,h(k) n dt2)




A bypass surgery:

(S"1 x 1, AU 4 dt?)




A bypass surgery:

(S"1 x 1, AU 4 dt?)




There is another bypass surgery:

("1 x [, htW) + dr?)

L




There is another bypass surgery:

(S"1 x 1, AU  dt?)




There is another bypass surgery:

(S"1 x 1, AU  dt?)

\ AY AY \
\ AN AN \
\ \ \ \
\ AY AY \
\ \ \ \
\ \ \ \
(Mx1,8)




There is another bypass surgery:

(S"1 x 1, AU  dt?)




THANK YQOU!



