Hopf's theorem for surfaces with constant mean curvature and its generalizations

Naoya Ando (Kumamoto University, JAPAN)

S: a surface in E^3 .

- S: a surface in E³.
- Suppose that
- S is homeomorphic to S²,

- S: a surface in E³.
- Suppose that
- S is homeomorphic to S²,
- S has constant mean curvature.

- S: a surface in E³.
- Suppose that
- S is homeomorphic to S²,
- S has constant mean curvature.
- \Rightarrow S is a round sphere.

Key points of the proof

Key points of the proof

• The index $i(a_0)$ of an isolated

umbilical point a₀ on a surface with constant mean curvature is negative;

Key points of the proof

• The index $i(a_0)$ of an isolated

umbilical point a₀ on a surface with constant mean curvature is negative;

Hopf-Poincare's theorem:

 Σ i(a₀)

= the Euler number of S.

If curvature lines are as in the left figure, then <u>1</u> 2 $i(a_0)$

Q: the Hopf differential on S

- Q: the Hopf differential on S
- ⇒ Since the mean curvature is constant, Q is holomorphic;

Q: the Hopf differential on S

- ⇒ Since the mean curvature is constant, Q is holomorphic;
 - an umbilical point of S is just a zero point of Q.

- Q: the Hopf differential on S
- ⇒ Since the mean curvature is constant, Q is holomorphic;
 - an umbilical point of S is just a zero point of Q.
- If S is not totally umbilical, then any umbilical point is isolated.
a₀: an isolated umbilical point of S,

a₀: an isolated umbilical point of S, (u, v): isothermal coordinates on a neighborhood U₀ of a₀ s.t. a₀ corresponds to (0, 0).

 a_0 : an isolated umbilical point of S, (u, v): isothermal coordinates on a neighborhood U_0 of a_0 s.t. a_0 corresponds to (0, 0), $w:= u + iv_{.}$ If we represent Q as $Q = \Phi dw^2$, then $\Phi = w^n f(w)$, where $f(0) \neq 0$.

r: a positive number.

r: a positive number.

We set $f(re^{it}) = \rho(t)exp(i\theta(t))$.

- r: a positive number.
- We set $f(re^{it}) = \rho(t)exp(i\theta(t))$.
- ⇒ We can suppose $\rho \neq 0$ and $\theta(2\pi) = \theta(0).$

- r: a positive number.
- We set $f(re^{it}) = \rho(t)exp(i\theta(t))$.
- ⇒ We can suppose $\rho \neq 0$ and $\theta(2\pi) = \theta(0).$
- φ: a smooth function on **R** s.t.

$$V(t) := \cos \phi(t) \frac{\partial}{\partial u} + \sin \phi(t) \frac{\partial}{\partial v}$$

is contained in a principal direction at (r cos t, r sin t) for $\forall t \in \mathbf{R}$.

Since Im(Q(V, V))=0, $Im(\Phi exp(2i \phi)) = 0$.

Since Im(Q(V, V))=0, $Im(\Phi \exp(2i \phi)) = 0$. $\therefore nt + \theta(t) + 2\phi(t)$ $= \exists N \pi (\forall t \in \mathbf{R})$.

(r cos t, r sin t)

Sinc	e Im(Q(V, V))=0,			
lm (Ф ехр(2і ф)) = 0.			
	nt + θ(t) + 2φ(t)		a ₀	
	=∃Nπ (∀t∈ R).			
	φ(2π) – φ(0) = – חז	τ	(r cos t,	r sin t)

Since Im(Q(V, V))=0,
Im (
$$\Phi \exp(2i \phi)$$
) = 0.
 \therefore nt + $\theta(t) + 2\phi(t)$
 $= \exists N \pi \ (\forall t \in \mathbf{R}).$
 $\therefore \phi(2\pi) - \phi(0) = -n\pi$
 $i(a_0) = \frac{\phi(2\pi) - \phi(0)}{2\pi} = -\frac{n}{2} < 0$

Since S is homeomorphic to S², if S is not totally umbilical, then S has at most finite umbilical points. Since S is homeomorphic to S^2 , if S is not totally umbilical, then S has at most finite umbilical points. According to Hopf-Poincare's theorem, the sum of all the indices is equal to the Euler number of S (= 2).

Since S is homeomorphic to S², if S is not totally umbilical, then S has at most finite umbilical points.

According to Hopf-Poincare's theorem,

the sum of all the indices is equal to

the Euler number of S (= 2).

Contradiction!

The same result holds for

The same result holds for

special Weingarten surfaces
 (Hartman-Wintner, Chern);

The same result holds for

- special Weingarten surfaces
 (Hartman-Wintner, Chern);
- surfaces with constant anisotropic

mean curvature. (Koiso-Palmer, A).

Special Weingarten surfaces

Special Weingarten surfaces

A surface S in E³ is said to be <u>Weingarten</u>

def ⇔

Special Weingarten surfaces

A surface S in E³ is said to be <u>Weingarten</u>

def

 \Leftrightarrow \exists W (\ddagger 0): a smooth function of two

- variables s.t. W(k_1, k_2)=0
- on S, where k_1 and k_2 are

principal curvatures of S.

A Weingarten surface S is said to be <u>special</u>

A Weingarten surface S is said to be <u>special</u>

⇔ We can choose W s.t.

$$\frac{\partial W}{\partial X}(k_1, k_2)\frac{\partial W}{\partial Y}(k_1, k_2) > 0$$

at any umbilical point of S.

A Weingarten surface S is said to be <u>special</u>

 \Leftrightarrow We can choose W s.t.

$$\frac{\partial W}{\partial X}(k_1, k_2)\frac{\partial W}{\partial Y}(k_1, k_2) > 0$$

at any umbilical point of S.

<u>Remark</u> A surface with constant mean

curvature is special Weingarten.

A Weingarten surface S is said to be <u>special</u> W(X, Y):= X + Y - 2H₀ def

 \Leftrightarrow We can choose W s.t.

$$\frac{\partial W}{\partial X}(k_1, k_2)\frac{\partial W}{\partial Y}(k_1, k_2) > 0$$

at any umbilical point of S.

<u>Remark</u> A surface with constant mean

curvature is special Weingarten.

Hartman-Wintner proved that if S is special Weingarten and not totally umbilical, Hartman-Wintner proved that if S is special Weingarten and not totally umbilical, then any umbilical point a_0 of S is isolated and $i(a_0) < 0$. f: a function of u, v s.t the graph of f is a neighborhood of a₀ in S.

- f: a function of u, v s.t the graph of f is a neighborhood of a₀ in S.
- ⇒ f is a solution of an elliptic equation of 2nd order:

- f: a function of u, v s.t the graph of f is a neighborhood of a_0 in S.
- ⇒ f is a solution of an elliptic equation of 2nd order:

 $\Psi(u, v, f, p_f, q_f, r_f, s_f, t_f) = 0,$

where Ψ is a function of eight variables s.t. $\frac{\partial \Psi}{\partial r} \frac{\partial \Psi}{\partial t} - \frac{1}{4} \left(\frac{\partial \Psi}{\partial s}\right)^2 > 0.$

The key point of Hartman-Wintner's result:

<u>The key point of Hartman-Wintner's</u> <u>result:</u>

If f_0 is a solution of the same equation s.t. $f_0(0, 0) = f(0, 0)$ and $f_0 \neq f$,

The key point of Hartman-Wintner's result:

If f_0 is a solution of the same equation s.t. $f_0(0, 0) = f(0, 0)$ and $f_0 \neq f$, then

$$f - f_0 = p_k(u, v) + o((u^2 + v^2)^{k/2}),$$

where p_k is a homogeneous polynomial of degree $k \in \mathbb{N}$.

Chern devised another proof of Hartman-Wintner's result.

Chern devised another proof of Hartman-Wintner's result.

If S is special Weingarten and not totally umbilical,
If S is special Weingarten and not totally umbilical, then Chern proved $\Phi(w, \overline{w}) = cw^n + o(|w|^n),$ where $c \in \mathbb{C} \setminus \{0\}$ and $n \in \mathbb{N}$. If S is special Weingarten and not totally umbilical, then Chern proved $\Phi(w, \overline{w}) = cw^n + o(|w|^n),$ where $c \in \mathbf{C} \setminus \{0\}$ and $n \in \mathbf{N}$.

This implies that a_0 is an isolated umbilical point and $i(a_0) = -\frac{n}{2}$.

mean curvature

mean curvature

W: a surface in E^3 .

mean curvature

- W: a surface in E^3 .
- Suppose that
- W is homeomorphic to S²,

mean curvature

- W: a surface in E³. Suppose that
- W is homeomorphic to S²,
- the Gaussian curvature of W is everywhere positive.

S: a surface in E^3 ,

S: a surface in E^3 ,

g: $S \rightarrow W$: a smooth map s.t.

 $T_a(S) // T_{g(a)}(W)$ in $E^3 (\forall a \in S)$.

S: a surface in E^3 ,

g: S \rightarrow W: a smooth map s.t.

$T_a(S) // T_{g(a)}(W)$ in E³ (∀a∈S). We call g the <u>anisotropic Gauss map</u>.

S: a surface in E^3 ,

g: S \rightarrow W: a smooth map s.t.

$T_a(S) // T_{g(a)}(W)$ in $E^3 (\forall a \in S)$. We call g the <u>anisotropic Gauss map</u>.

<u>Remark</u>

If W is the unit sphere, then g is

a usual Gauss map.

Since $T_a(S) // T_{g(a)}(W)$, we can consider the differential dg of g to be a smooth tensor field on S of type (1, 1). Since $T_a(S) // T_{g(a)}(W)$, we can consider the differential dg of g to be a smooth tensor field on S of type (1, 1). We call A:= -dg the <u>anisotropic shape</u> operator Since $T_a(S) // T_{g(a)}(W)$, we can consider the differential dg of g to be a smooth tensor field on S of type (1, 1). We call A:= -dg the **anisotropic shape operator** and Λ :=tr A (the trace of A) the **anisotropic mean curvature**.

Koiso-Palmer proved that

- if S is homeomorphic to S^2 and
- if Λ is constant, then S is similar to W in E^3

Koiso-Palmer proved that

- if S is homeomorphic to S^2 and
- if Λ is constant, then S is similar to W in E³:
- they showed that if S is not similar to
- W, then any anisotropic umbilical point
- a_0 of S is isolated and $i(a_0) < 0$.

THANK YOU!