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* Hopf-Poincare’s theorem:
2 i(ap)

= the Euler number of S.
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= =*Since the mean curvature is

constant, Q is holomorphic;
-an umbilical point of S is just
a zero point of Q.
. If Sis not totally umbilical,
then any umbilical point is isolated.
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a,: an isolated umbilical point of S,
(u, v): isothermal coordinates on
a neighborhood U, of a, s.t.
a, corresponds to (0, 0),
W:=U + IV.
If we represent Q as Q= Qdw?,
then @ = w" f(w), where f(0) # 0.
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We set f(re't) = p(t)exp(iB(t)).

= We can suppose p # 0 and
0(2m) = 6(0).

¢: a smooth function on R s.t.

V(t):= cos c|>(t)§—u + sin cb(t)%

is contained in a principal direction
at (rcost, rsint)for Vt €R.
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Since Im(Q(V, V))=0,
Im (® exp(2i ¢)) = 0.

nt + O(t) + 2 (t)

=dNn (VtER). /
d(21) — d(0) = — nm (rcost,rsint)
i(ay) = ¢(2m) — P(0) __n <0

211 p)
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Since S is homeomorphic to S?,

if S is not totally umbilical, then S has
at most finite umbilical points.
According to Hopf-Poincare’s theorem,
the sum of all the indices is equal to

the Euler number of S (= 2).

Contradiction!
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The same result holds for

- special Weingarten surfaces
(Hartman-Wintner, Chern);

- surfaces with constant anisotropic
mean curvature.
(Koiso-Palmer, A).
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A Weingarten surface S is said to be

special W(X, Y):=X+Y -2H,
def
é We can choose W s.t.

oW oW
—(k,, k))—(k4, k;) >0
gy vl e e

at any umbilical point of S.

Remark A surface with constant mean

curvature is special Weingarten.



Hartman-Wintner proved that
if S is special Weingarten and not
totally umbilical,



Hartman-Wintner proved that

if S is special Weingarten and not
totally umbilical, then any umbilical
point a, of S is isolated and i(a,) < O.
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f: a function of u, v s.t the graph of f is
a neighborhood of a; in S.

= fis a solution of an elliptic equation
of 2"d order:

LIJ(U/ vV, f) pf} qf/ rf/ Sf/ tf) = O)

where W is a function of eight

2
variables s.t. oWow 1 <O_LIJ> > 0.

or ot 4 \0s



The key point of Hartman-Wintner’s
result:




The key point of Hartman-Wintner’s
result:

If f, is a solution of the same equation
s.t. f4(0, 0) =f(0, 0) and f, # f,



The key point of Hartman-Wintner’s
result:

If f, is a solution of the same equation
s.t. f4(0, 0) =1(0, 0) and f, # f, then

f—f,=p(u, v)+o((u+v3)¥2),

where p, is a homogeneous
polynomial of degree kEN.
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Chern devised another proof of
Hartman-Wintner’s result.

(u, v): isothermal coordinates on
a neighborhood U, of a, s.t.
a, corresponds to (0, 0),

W:=Uu + |V.
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If S is special Weingarten and not
totally umbilical, then Chern proved

O(w, W) = cw" + o(|w|"),

where c€C \{0} and nEN.

This implies that a; is an isolated

umbilical point and i(a,)= — %
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W: a surface in E3.

Suppose that

= W is homeomorphic to S?,

 the Gaussian curvature of W is
everywhere positive.
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S: asurfacein E3,

g:S — W:asmooth map s.t.

T.(S) // T, (W) in E3 (Va&ES).
We call g the anisotropic Gauss map.

Remark

If W is the unit sphere, then g is
a usual Gauss map.
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Since T,(S) // T,,(W), we can consider
the differential dg of g to be a smooth
tensor field on S of type (1, 1).

We call A:= —dg the anisotropic shape

operator and A:=tr A (the trace of A)

the anisotropic mean curvature.




Koiso-Palmer proved that

if Sis homeomorphic to S? and

if \is constant, then S is similar to W
in E3



Koiso-Palmer proved that

if Sis homeomorphic to S? and

if \is constant, then S is similar to W
in E3:

they showed that if S is not similar to
W, then any anisotropic umbilical point
a, of Sis isolated and i(a,) < O.



THANK YOU!



