Hopf's theorem for surfaces with constant mean curvature and its generalizations

Naoya Ando
(Kumamoto University, JAPAN)

Hopf's theorem

Hopf's theorem

S : a surface in E^{3}.

Hopf's theorem

S : a surface in E^{3}.
Suppose that

- S is homeomorphic to S^{2},

Hopf's theorem

S : a surface in E^{3}.
Suppose that

- S is homeomorphic to S^{2},
- S has constant mean curvature.

Hopf's theorem

S : a surface in E^{3}.
Suppose that

- S is homeomorphic to S^{2},
- S has constant mean curvature.
$\Rightarrow S$ is a round sphere.

Key points of the proof

Key points of the proof

- The index $i\left(a_{0}\right)$ of an isolated umbilical point a_{0} on a surface with constant mean curvature is negative;

Key points of the proof

- The index $i\left(a_{0}\right)$ of an isolated umbilical point a_{0} on a surface with constant mean curvature is negative;
- Hopf-Poincare's theorem:
$\Sigma i\left(a_{0}\right)$
$=$ the Euler number of S .

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=$

Example

If curvature lines (integral curves of a principal distribution) are as in the left figure, then
$i\left(a_{0}\right)=1$.

If curvature lines are as in the left figure, then
$i\left(a_{0}\right)=$

If curvature lines are as in the left figure, then
$\mathrm{i}\left(\mathrm{a}_{0}\right)=$

If curvature lines are as in the left figure, then
$\mathrm{i}\left(\mathrm{a}_{0}\right)=$

If curvature lines are as in the left figure, then
$i\left(a_{0}\right)=$

If curvature lines are as in the left figure, then
$i\left(a_{0}\right)=$

If curvature lines are as in the left figure, then
$i\left(a_{0}\right)=$

If curvature lines are as in the left figure, then
$\mathrm{i}\left(\mathrm{a}_{0}\right)=$

If curvature lines are as in the left figure, then
$\mathrm{i}\left(\mathrm{a}_{0}\right)=$

If curvature lines are as in the left figure, then
$i\left(a_{0}\right)=$

If curvature lines are as in the left figure, then
$i\left(a_{0}\right)=$

If curvature lines are as in the left figure, then

Outline of the proof

Outline of the proof

Q: the Hopf differential on S

Outline of the proof

Q: the Hopf differential on S
$\Rightarrow \quad$ - Since the mean curvature is constant, Q is holomorphic;

Outline of the proof

Q: the Hopf differential on S
$\Rightarrow \quad$ - Since the mean curvature is constant, Q is holomorphic; - an umbilical point of S is just a zero point of Q .

Outline of the proof

Q: the Hopf differential on S
$\Rightarrow \quad$ - Since the mean curvature is constant, Q is holomorphic;

- an umbilical point of S is just a zero point of Q .
\therefore If S is not totally umbilical, then any umbilical point is isolated.

a_{0} : an isolated umbilical point of S ,

a_{0} : an isolated umbilical point of S ,
(u, v): isothermal coordinates on
a neighborhood U_{0} of a_{0} s.t.
a_{0} corresponds to (0,0).
a_{0} : an isolated umbilical point of S,
(u, v): isothermal coordinates on a neighborhood U_{0} of a_{0} s.t. a_{0} corresponds to $(0,0)$,
$\mathrm{w}:=\mathrm{u}+\mathrm{iv}$.
If we represent Q as $\mathrm{Q}=\Phi \mathrm{dw}{ }^{2}$,
then $\Phi=w^{n} f(w)$, where $f(0) \neq 0$.
r: a positive number.
r : a positive number. We set $f\left(r{ }^{i t}\right)=\rho(t) \exp (i \theta(t))$.
r: a positive number.
We set $\mathrm{f}\left(\mathrm{re}^{\mathrm{it})}=\rho(\mathrm{t}) \exp (\mathrm{i} \theta(\mathrm{t}))\right.$.
\Rightarrow We can suppose $\rho \neq 0$ and

$$
\theta(2 \pi)=\theta(0) .
$$

r: a positive number.
We set $f\left(r e^{i t}\right)=\rho(t) \exp (i \theta(t))$.
\Rightarrow We can suppose $\rho \neq 0$ and

$$
\theta(2 \pi)=\theta(0)
$$

ϕ : a smooth function on \mathbf{R} s.t.

$$
V(t):=\cos \phi(t) \frac{\partial}{\partial u}+\sin \phi(t) \frac{\partial}{\partial v}
$$

is contained in a principal direction at $(r \cos t, r \sin t)$ for $\forall t \in R$.

Since $\operatorname{Im}(Q(V, V))=0$, $\operatorname{lm}(\Phi \exp (2 i \phi))=0$.

Since $\operatorname{Im}(Q(V, V))=0$,

 $\operatorname{lm}(\Phi \exp (2 i \phi))=0$.$\therefore \quad \mathrm{nt}+\theta(\mathrm{t})+2 \phi(\mathrm{t})$
$=\exists N \pi(\forall t \in R)$.

Since $\operatorname{Im}(\mathrm{Q}(\mathrm{V}, \mathrm{V}))=0$, $\operatorname{Im}(\Phi \exp (2 i \phi))=0$.
$\therefore \quad n t+\theta(t)+2 \phi(t)$ $=\exists N \pi(\forall t \in R)$.
$\therefore \phi(2 \pi)-\phi(0)=-n \pi$

Since $\operatorname{Im}(Q(V, V))=0$, $\operatorname{lm}(\Phi \exp (2 i \phi))=0$.
$\therefore \quad \mathrm{nt}+\theta(\mathrm{t})+2 \phi(\mathrm{t})$ $=\exists N \pi(\forall t \in R)$.
$\therefore \phi(2 \pi)-\phi(0)=-n \pi$
$(r \cos t, r \sin t)$
$\therefore \quad i\left(a_{0}\right)=\frac{\phi(2 \pi)-\phi(0)}{2 \pi}=-\frac{n}{2}<0$

Since S is homeomorphic to S^{2}, if S is not totally umbilical, then S has at most finite umbilical points.

Since S is homeomorphic to S^{2}, if S is not totally umbilical, then S has at most finite umbilical points. According to Hopf-Poincare's theorem, the sum of all the indices is equal to the Euler number of $S(=2)$.

Since S is homeomorphic to S^{2}, if S is not totally umbilical, then S has at most finite umbilical points.
According to Hopf-Poincare's theorem, the sum of all the indices is equal to the Euler number of $S(=2)$.

Generalizations of Hopf's theorem:

Generalizations of Hopf's theorem:

The same result holds for

Generalizations of Hopf's theorem:

The same result holds for

- special Weingarten surfaces
(Hartman-Wintner, Chern);

Generalizations of Hopf's theorem:

The same result holds for

- special Weingarten surfaces
(Hartman-Wintner, Chern);
- surfaces with constant anisotropic mean curvature.
(Koiso-Palmer, A).

Special Weingarten surfaces

Special Weingarten surfaces

A surface S in E^{3} is said to be
Weingarten def \Leftrightarrow

Special Weingarten surfaces

A surface S in E^{3} is said to be
Weingarten
def
$\Leftrightarrow \exists \mathrm{W}(\not \equiv 0)$: a smooth function of two
variables s.t. $W\left(k_{1}, k_{2}\right) \equiv 0$
on S , where k_{1} and k_{2} are principal curvatures of S.

A Weingarten surface S is said to be

 special def \LeftrightarrowA Weingarten surface S is said to be special def \Leftrightarrow We can choose W s.t.

$$
\frac{\partial W}{\partial X}\left(k_{1}, k_{2}\right) \frac{\partial W}{\partial Y}\left(k_{1}, k_{2}\right)>0
$$

at any umbilical point of S.

A Weingarten surface S is said to be special def
\Leftrightarrow We can choose W s.t.

$$
\frac{\partial W}{\partial X}\left(k_{1}, k_{2}\right) \frac{\partial W}{\partial Y}\left(k_{1}, k_{2}\right)>0
$$

at any umbilical point of S.
Remark A surface with constant mean curvature is special Weingarten.

A Weingarten surface S is said to be special

$$
W(X, Y):=X+Y-2 H_{0}
$$

def
\Leftrightarrow We can choose W s.t.

$$
\frac{\partial W}{\partial X}\left(k_{1}, k_{2}\right) \frac{\partial W}{\partial Y}\left(k_{1}, k_{2}\right)>0
$$

at any umbilical point of S.
Remark A surface with constant mean curvature is special Weingarten.

Hartman-Wintner proved that if S is special Weingarten and not totally umbilical,

Hartman-Wintner proved that if S is special Weingarten and not totally umbilical, then any umbilical point a_{0} of S is isolated and $i\left(a_{0}\right)<0$.
f : a function of u, v s.t the graph of f is a neighborhood of a_{0} in S .
f : a function of u, v s.t the graph of f is a neighborhood of a_{0} in S .
$\Rightarrow f$ is a solution of an elliptic equation of $2^{\text {nd }}$ order:
f : a function of u, v s.t the graph of f is a neighborhood of a_{0} in S .
$\Rightarrow f$ is a solution of an elliptic equation of $2^{\text {nd }}$ order:

$$
\Psi\left(u, v, f, p_{f}, q_{f}, r_{f}, s_{f}, t_{f}\right)=0
$$

where Ψ is a function of eight
variables s.t. $\frac{\partial \Psi}{\partial r} \frac{\partial \Psi}{\partial t}-\frac{1}{4}\left(\frac{\partial \Psi}{\partial s}\right)^{2}>0$.

The key point of Hartman-Wintner's

 result:
The key point of Hartman-Wintner's

 result:If f_{0} is a solution of the same equation s.t. $f_{0}(0,0)=f(0,0)$ and $f_{0} \neq f$,

The key point of Hartman-Wintner's

result:

If f_{0} is a solution of the same equation s.t. $f_{0}(0,0)=f(0,0)$ and $f_{0} \equiv f$, then

$$
f-f_{0}=p_{k}(u, v)+o\left(\left(u^{2}+v^{2}\right)^{k / 2}\right)
$$

where p_{k} is a homogeneous polynomial of degree $k \in \mathbf{N}$.

Chern devised another proof of Hartman-Wintner's result.

Chern devised another proof of Hartman-Wintner's result.
(u, v): isothermal coordinates on
a neighborhood U_{0} of a_{0} s.t. a_{0} corresponds to $(0,0)$,
$\mathrm{w}:=\mathrm{u}+\mathrm{iv}$.

If S is special Weingarten and not totally umbilical,

If S is special Weingarten and not totally umbilical, then Chern proved

$$
\Phi(w, \bar{w})=c w^{n}+o\left(|w|^{n}\right),
$$

where $c \in \mathbf{C} \backslash\{0\}$ and $n \in \mathbf{N}$.

If S is special Weingarten and not totally umbilical, then Chern proved

$$
\Phi(w, \bar{w})=c w^{n}+o\left(|w|^{n}\right),
$$

where $\mathrm{c} \in \mathbf{C} \backslash\{0\}$ and $\mathrm{n} \in \mathbf{N}$.

This implies that a_{0} is an isolated
umbilical point and $i\left(a_{0}\right)=-\frac{n}{2}$.

Surfaces with constant anisotropic

mean curvature

Surfaces with constant anisotropic

mean curvature

W : a surface in E^{3}.

Surfaces with constant anisotropic

mean curvature

W: a surface in E^{3}.
Suppose that

- W is homeomorphic to S^{2},

Surfaces with constant anisotropic

mean curvature

W: a surface in E^{3}.
Suppose that

- W is homeomorphic to S^{2},
- the Gaussian curvature of W is everywhere positive.
S : a surface in E^{3},
$S:$ a surface in E^{3},
$\mathrm{g}: \mathrm{S} \longrightarrow \mathrm{W}$: a smooth map s.t.

$$
\mathrm{T}_{\mathrm{a}}(\mathrm{~S}) / / \mathrm{T}_{\mathrm{g}(\mathrm{a})}(\mathrm{W}) \operatorname{in}^{\mathrm{E}} \mathrm{E}^{3}(\forall \mathrm{a} \in \mathrm{~S})
$$

S : a surface in E^{3}, $\mathrm{g}: \mathrm{S} \longrightarrow \mathrm{W}$: a smooth map s.t.

$$
\mathrm{T}_{\mathrm{a}}(\mathrm{~S}) / / \mathrm{T}_{\mathrm{g}(\mathrm{a})}(\mathrm{W}) \operatorname{in}^{\mathrm{E}} \mathrm{E}^{3}(\forall \mathrm{a} \in \mathrm{~S})
$$

We call g the anisotropic Gauss map.

S: a surface in E^{3},
$\mathrm{g}: \mathrm{S} \longrightarrow \mathrm{W}$: a smooth map s.t.

$$
\mathrm{T}_{\mathrm{a}}(\mathrm{~S}) / / \mathrm{T}_{\mathrm{g}(\mathrm{a})}(\mathrm{W}) \operatorname{in}^{\mathrm{E}} \mathrm{E}^{3}(\forall \mathrm{a} \in \mathrm{~S})
$$

We call g the anisotropic Gauss map.
Remark
If W is the unit sphere, then g is a usual Gauss map.

Since $T_{a}(S) / / T_{g(a)}(W)$, we can consider the differential dg of g to be a smooth tensor field on S of type $(1,1)$.

Since $T_{a}(S) / / T_{g(a)}(W)$, we can consider the differential dg of g to be a smooth tensor field on S of type $(1,1)$.
We call $A:=-d g$ the anisotropic shape operator

Since $T_{a}(S) / / T_{g(a)}(W)$, we can consider the differential dg of g to be a smooth tensor field on S of type $(1,1)$. We call $A:=-d g$ the anisotropic shape operator and $\Lambda:=\operatorname{tr} A$ (the trace of A) the anisotropic mean curvature.

Koiso-Palmer proved that
if S is homeomorphic to S^{2} and
if Λ is constant, then S is similar to W in E^{3}

Koiso-Palmer proved that if S is homeomorphic to S^{2} and if Λ is constant, then S is similar to W in E^{3} :
they showed that if S is not similar to W, then any anisotropic umbilical point a_{0} of S is isolated and $i\left(a_{0}\right)<0$.

THANK YOU!

