The lifts of surfaces in neutral 4-manifolds into the 2-Grassmann bundles

Naoya Ando (Kumamoto University)

Contents

1. Minimal surfaces in Riemannian 4-manifolds

2. Space-like surfaces with zero mean curvature vector in Lorentzian 4-manifolds and Willmore surfaces in 3-dimensional space forms

3. Space-like surfaces with zero mean curvature vector in neutral 4-manifolds

4. Time-like surfaces with zero mean curvature vector in neutral 4-manifolds
1. Minimal surfaces in Riemannian 4-manifolds

N: an oriented Riemannian 4-dimensional manifold with its metric h.

\Rightarrow For $a \in N$, the eigenvalues of $*: \bigwedge^2 T_aN \to \bigwedge^2 T_aN$ are ± 1, and the corresponding eigenspaces are of dimension 3.

We have a bundle decomposition

$$\bigwedge^2 TN = \bigwedge^2_+ TN \oplus \bigwedge^2_- TN$$

(notice the double covering $SO(4) \to SO(3) \times SO(3)$).

We see that $\bigwedge^2_{\pm} TN$ are locally generated by

$$\frac{1}{\sqrt{2}}(\theta_{12} \pm \theta_{34}), \quad \frac{1}{\sqrt{2}}(\theta_{13} \pm \theta_{42}), \quad \frac{1}{\sqrt{2}}(\theta_{14} \pm \theta_{23}),$$

where $\theta_{ij} := e_i \wedge e_j$ and (e_1, e_2, e_3, e_4) is a local ordered orthonormal frame field of TN giving the orientation of N.
• If N is hyperKähler, then one of $\bigwedge^{2}_{\pm}TN$ is a product bundle.
• If $N = E^{4}$, then both of $\bigwedge^{2}_{\pm}TN$ are product bundles.

The twistor spaces associated with N are the sphere bundles in $\bigwedge^{2}_{\pm}TN$:

$$U\left(\bigwedge^{2}_{+}TN\right) := \left\{ \Theta \in \bigwedge^{2}_{+}TN \mid \hat{h}(\Theta, \Theta) = 1 \right\},$$

$$U\left(\bigwedge^{2}_{-}TN\right) := \left\{ \Theta \in \bigwedge^{2}_{-}TN \mid \hat{h}(\Theta, \Theta) = 1 \right\}.$$
M: a Riemann surface,

$F : M \rightarrow N$: a conformal immersion of a Riemann surface M into N.

$\Theta_{F,\pm}$: sections of $U\left(\bigwedge_{\pm}^2 F^*TN\right)$ defined by $\Theta_{F,\pm} := \frac{1}{\sqrt{2}}(\xi_1 \wedge \xi_2 \pm \xi_3 \wedge \xi_4)$, where $\xi_1, \xi_2, \xi_3, \xi_4$ form a local orthonormal frame field of F^*TN s.t.

- $(\xi_1, \xi_2, \xi_3, \xi_4)$ gives the orientation of N,
- $\xi_1, \xi_2 \in dF(TM)$ so that (ξ_1, ξ_2) gives the orientation of M.

$I_{F,\pm}$: the complex structures of F^*TN corresponding to $\Theta_{F,\pm}$.

Then $\Theta_{F,\pm} = \frac{1}{\sqrt{2}}(e \wedge I_{F,\pm}(e) + e^\perp \wedge I_{F,\pm}(e^\perp))$, where e (respectively, e^\perp) is a unit tangent (respectively, normal) vector of F.

If N is hyperKähler so that $\bigwedge_{\pm}^2 TN$ (respectively, $\bigwedge_{-}^2 TN$) is a product bundle, then we can consider $\Theta_{F,+}$ (respectively, $\Theta_{F,-}$) to be a map from M into $\mathbb{C}P^1$.
Theorem (A, 2020)

Suppose that N is hyperKähler and that $F : M \rightarrow N$ is minimal. Then one of $\Theta_{F,+}, \Theta_{F,-}$ is a holomorphic map from M into $\mathbb{C}P^1$.

In particular, we have the following corollary, which is a well-known theorem (see pp. 16–22 in D. A. Hoffman and R. Osserman, *The geometry of the generalized Gauss map*, Memoirs of AMS 236, 1980).

Corollary

$F : M \rightarrow E^4 :$ a conformal and minimal immersion of M into E^4. Then the Gauss map $G_F : M \rightarrow \mathbb{C}P^1 \times \mathbb{C}P^1$ of F is holomorphic.
Proof of the theorem
Suppose that $\Lambda^2_+ TN$ is a product bundle.
Then we can suppose that

$$\Theta_{+,1} := \frac{1}{\sqrt{2}}(\theta_{12} + \theta_{34}), \quad \Theta_{+,2} := \frac{1}{\sqrt{2}}(\theta_{13} + \theta_{42}), \quad \Theta_{+,3} := \frac{1}{\sqrt{2}}(\theta_{14} + \theta_{23})$$

are horizontal. These sections form an orthonormal frame field of $\Lambda^2_+ TN$.

$g_{F,+}$: a \mathbb{CP}^1-valued function satisfying

$$
\Theta_{F,+} = \frac{1 - |g_{F,+}|^2}{1 + |g_{F,+}|^2} \Theta_{+,1} + \frac{2\text{Re} \ g_{F,+}}{1 + |g_{F,+}|^2} \Theta_{+,2} + \frac{2\text{Im} \ g_{F,+}}{1 + |g_{F,+}|^2} \Theta_{+,3}.
$$

w: a local complex coordinate of M.
If we set $dF\left(\frac{\partial}{\partial w}\right) = \sum_{i=1}^{4} \psi^i e_i$, then we obtain $g_{F,+} = \sqrt{-1} \frac{\psi^1 + \sqrt{-1} \psi^2}{\psi^3 - \sqrt{-1} \psi^4}$.

Suppose that $F : M \longrightarrow N$ is minimal. Then $\nabla_{\partial / \partial w} dF \left(\frac{\partial}{\partial w} \right) = 0$.

We set $\nabla e_i = \sum_{j=1}^{4} \omega^j_i e_j \ (i = 1, 2, 3, 4)$.

\implies • $\omega^i_j = -\omega^j_i$,

• $\omega^3_2 = -\omega^4_1, \ \omega^4_2 = \omega^1_3, \ \omega^4_3 = -\omega^2_1$,

• $\frac{\partial \psi^i}{\partial w} + \sum_{j \neq i} \psi^j \omega^j_i \left(\frac{\partial}{\partial w} \right) = 0 \ (i = 1, 2, 3, 4)$.

Using these, we can obtain $\frac{\partial g_{F,+}}{\partial w} = 0$. \qed
\(F : M \rightarrow N \): a conformal and minimal immersion of \(M \) into \(N \),
\[\Psi := dF(\partial/\partial w). \]

\[\implies \Psi dw \text{ gives a section of } F^*TN \otimes \mathbb{C} \otimes T^*M \text{ on } M. \]

\(\nabla \): the connection of \(F^*TN \otimes \mathbb{C} \otimes T^*M \) given by the Levi-Civita connection \(\nabla \) of \(h \).

\[\implies \nabla_{\partial/\partial w}(\Psi dw) = \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) dw \quad (\sigma: \text{the 2nd fundamental form of } F). \]

We see that

\[Q := h \left(\sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right), \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) \right) dw \otimes dw \otimes dw \otimes dw \]

does not depend on the choice of a local complex coordinate \(w \) and we can define a complex quartic differential \(Q \) on \(M \).

If \(N \) is a 4-dimensional Riemannian space form, then we see by the equations of Codazzi that \(Q \) is holomorphic.
Theorem The following are mutually equivalent:

(a) at each point of M, principal curvatures do not depend on the choice of a unit normal vector of F;

(b) $h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = h(\sigma(T_1, T_2), \sigma(T_1, T_2))$, $h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0$ for $T_1 := dF(\partial/\partial u), T_2 := dF(\partial/\partial v)$;

(c) $Q \equiv 0$;

(d) one of $\Theta_F,+, \Theta_F,-$ is horizontal w.r.t. the connection $\hat{\nabla}$ of $\Lambda^2 F^*TN$ induced by ∇;

(e) one of I_F,\pm is parallel w.r.t. ∇;

(f) we have one of $I_F,\pm \sigma(T_1, T_1) = \sigma(T_1, T_2)$.
We say that a minimal immersion F is \emph{isotropic} if one of $(a) \sim (f)$ in the above theorem holds.

We easily see

- (a), (b), (c) and (f) are mutually equivalent,
- (d) and (e) are equivalent.

In addition, (a) and (d) are equivalent (Friedrich).
Suppose $N = S^4$.
Bryant showed that an isotropic minimal surface (superminimal surface) is
given by the composition of

- the twistor map
 \[\mathbb{CP}^3 \longrightarrow S^4 (= \mathbb{HP}^1), \quad a \mathbb{C} \mapsto a \mathbb{H} \quad (a \in \mathbb{C}^4 \setminus \{0\} = \mathbb{H}^2 \setminus \{0\}) \]
 associated with S^4,
- a holomorphic immersion $\hat{F} : M \longrightarrow \mathbb{CP}^3$ which is horizontal in
 the twistor space $\mathbb{CP}^3 (= Sp(2)/U(2) \cong SO(5)/U(2))$.
Suppose $N = E^4$.
Then a conformal immersion $F : M \to E^4$ is an isotropic minimal immersion if and only if
the composition of F with an isometry of E^4 is a holomorphic immersion into $C^2 = E^4$.

Suppose that N is hyperKähler.
Then a conformal immersion $F : M \to N$ is an isotropic minimal immersion compatible with the orientation of N
if and only if
F is a complex curve w.r.t. a complex structure given by
the hyperKähler structure of N.
Suppose that N is a Kähler surface.
Then a conformal immersion $F : M \rightarrow N$ is an isotropic minimal immersion which is compatible with the orientation of N and equipped with at least one complex point if and only if F is a complex curve w.r.t. the complex structure given by the Kähler structure of N.
R: the curvature tensor of ∇:
\[R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \]
\[\hat{R}: \text{the curvature tensor of } \hat{\nabla}. \]

\[\Rightarrow \hat{R}(X_1, X_2)(Y_1 \wedge Y_2) = (R(X_1, X_2)Y_1) \wedge Y_2 + Y_1 \wedge R(X_1, X_2)Y_2. \]

(e_1, e_2): a local ordered orthonormal frame field of TM giving the orientation of M.

- If one of $\Theta_{F, \pm}$ is horizontal, then $\hat{R}(e_1, e_2)\Theta_{F, +} = 0$ or $\hat{R}(e_1, e_2)\Theta_{F, -} = 0$.
- If $\Theta_{F, \pm}$ are horizontal, then $\hat{R}(e_1, e_2)\Theta_{F, \pm} = 0$ and F is totally geodesic.
Theorem (A, 2020)

$F : M \rightarrow N$: a conformal and minimal immersion s.t. $\hat{R}(e_1, e_2)\Theta_{F, \pm} = 0$. Then Q is holomorphic.

In addition, if $\hat{\nabla}\Theta_{F, \pm} \neq 0$, then we can choose (e_1, e_2, e_3, e_4) satisfying

(a) the connection forms ω, ω^\perp given by $\omega := h(\nabla e_1, e_2)$, $\omega^\perp := h(\nabla e_3, e_4)$ satisfy $d \ast \omega = 0$ and $d \ast \omega^\perp = 0$;

(b) the 2nd fundamental form of F is constructed by a solution of an over-determined system s.t. the compatibility condition is given by $d \ast \omega = 0$ and $d \ast \omega^\perp = 0$.

Remark If N is a space form, then $\hat{R}(e_1, e_2)\Theta_{F, \pm} = 0$.

Remark The condition $d \ast \omega = 0$ means that on a neighborhood of each point of M, there exists a local complex coordinate $w = u + \sqrt{-1}v$ satisfying $e_1 = e^{-\lambda}dF(\partial/\partial u)$, $e_2 = e^{-\lambda}dF(\partial/\partial v)$ for a function λ.
Proof of the theorem

Since F is minimal, we have $\nabla \partial / \partial w \Psi = 0$.

Since $\hat{R}(e_1, e_2) \Theta F, \pm = 0$, we have $\hat{R} \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial \overline{w}} \right) \left(\frac{\partial}{\partial w} \wedge \frac{\partial}{\partial \overline{w}} \right) = 0$.

Therefore we obtain $\nabla \perp \partial / \partial w \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) = 0$ and this means that Q is holomorphic.

Suppose $\hat{\nabla} \Theta F, \pm \neq 0$.

Then principal curvatures of F at each point depend on the choice of a unit normal vector.

e_3: a locally defined unit normal vector field which gives the maximum of the absolute values of principal curvatures of F at each point.

Then the maximum is positive and therefore we can suppose that e_1, e_2 give principal directions of F w.r.t. e_3.
\(e_4 \): a unit normal vector field perpendicular to \(e_3 \).

\[
\sigma_{ij}^k := h(\sigma(e_i, e_j), e_k) \quad (i, j = 1, 2, k = 3, 4).
\]

\[
\implies \sigma_{11}^k + \sigma_{22}^k = 0 \quad (k = 3, 4), \quad \sigma_{12}^3 = 0, \quad \sigma_{11}^4 = 0.
\]

\[
f_{\pm} := \sigma_{11}^3 \pm \sigma_{12}^4 \implies f_{\pm} \neq 0.
\]

\[
p^j := 2\omega(e_j), \quad q^j := (-1)^{3-j}\omega^\perp(e_3-j) \quad (j = 1, 2).
\]

Then \(\hat{R}(e_1, e_2)\Theta_F,\pm = 0 \) mean

\[
e_1(\log |f_\pm|) = -p^2 \pm q^1, \quad e_2(\log |f_\pm|) = p^1 \pm q^2.
\]

Since \(\nabla \) is torsion-free, we obtain \(2[e_1, e_2] + p^1e_1 + p^2e_2 = 0 \).

Therefore we obtain

- \(e_1(p^1) + e_2(p^2) = 0, \) i.e., \(d \ast \omega = 0 \),
- \(e_2(q^1) - e_1(q^2) = \frac{1}{2}(p^1q^1 + p^2q^2), \) i.e., \(d \ast \omega^\perp = 0 \).
2. Space-like surfaces with zero mean curvature vector in Lorentzian 4-manifolds and Willmore surfaces in 3-dimensional space forms

N: an oriented Lorentzian 4-dimensional manifold with its metric h,

$F : M \rightarrow N$: a space-like and conformal immersion of M into N with zero mean curvature vector.

$$\nabla_{\partial/\partial w}(\Psi dw) = \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) dw \quad \left(\Psi := dF \left(\frac{\partial}{\partial w} \right) \right).$$

We can define a complex quartic differential Q on M by

$$Q := h \left(\sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right), \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) \right) dw \otimes dw \otimes dw \otimes dw.$$
We see that $Q \equiv 0$ if and only if the 2nd fundamental form is light-like or zero, that is, the shape operator of a light-like normal vector field vanishes.

If N is a 4-dimensional Lorentzian space form, then we see by the equations of Codazzi that Q is holomorphic, and $Q \equiv 0$ means that a light-like normal vector field is contained in a constant direction.

Remark L_0: the constant sectional curvature of N.

- $L_0 = 0 \implies N = E^4_1$.
- $L_0 > 0 \implies N = S^4_1(L_0) = \left\{ x \in E^5_1 \mid \langle x, x \rangle_{4,1} = \frac{1}{L_0} \right\}$.
- $L_0 < 0 \implies N = H^4_1(L_0) = \left\{ x \in E^5_2 \mid \langle x, x \rangle_{3,2} = \frac{1}{L_0} \right\}$.
\(\iota : M \rightarrow S^3 = \{x \in E^5_1 \mid \langle x, x \rangle_{4,1} = 0, \ x^5 = 1\}\): a conformal immersion,

\(e_3\): a unit normal vector field of \(\iota\) in \(S^3\),

\(H\): the mean curvature of \(\iota\) w.r.t. \(e_3\).

\[\implies \gamma_\iota := e_3 + H\iota\] is a map from \(M\) into the de Sitter 4-space \(S^4_1 = \{x \in E^5_1 \mid \langle x, x \rangle_{4,1} = 1\}\).

\(\text{Reg}(\iota)\): the set of non-umbilical points of \(\iota\).

\[\implies \gamma_\iota|_{\text{Reg}(\iota)}\] is a space-like immersion s.t. the induced metric \(g\) is given by

\[g = \varepsilon^2 g^M, \text{ where } \varepsilon := \sqrt{H^2 - K^M + 1}, \text{ and } K^M \text{ is the curvature of the induced metric } g^M \text{ by } \iota.\]

We call \(\gamma_\iota : M \rightarrow S^4_1\) the conformal Gauss map of \(\iota\).

We see that \(\iota\) is a light-like normal vector field of \(\gamma_\iota|_{\text{Reg}(\iota)}\) and that the trace of the shape operator of \(\gamma_\iota|_{\text{Reg}(\iota)}\) w.r.t. \(\iota\) vanishes.
\(\nu \): a light-like normal vector field of \(\gamma_\nu|_{\text{Reg}(\nu)} \) s.t. \(\langle \nu, \iota \rangle_{4,1} = -1 \).

\[\implies \text{The trace of the shape operator of } \gamma_\nu|_{\text{Reg}(\nu)} \text{ w.r.t. } \nu \text{ is given by} \]
\[- (\Delta H + 2H) \quad (\Delta: \text{the Laplacian on } \text{Reg}(\nu) \text{ w.r.t. } g). \]

Since \(\Delta H + 2H = \frac{1}{\varepsilon^2}(\Delta^M H + 2\varepsilon^2 H) \), we obtain

Theorem (Bryant) An immersion \(\iota \) is Willmore if and only if the mean curvature vector of \(\gamma_\iota|_{\text{Reg}(\iota)} \) vanishes.
\(\iota : M \rightarrow S^3 \): a conformal immersion,
\[\Xi := 2\sigma^M \otimes \text{Hess}^M_H + (H^2 + 1)\sigma^M \otimes \sigma^M - 2dH \otimes \nabla^M \sigma^M, \] where
- \(\sigma^M \): the 2nd fundamental form of \(\iota \),
- \(H \): the mean curvature of \(\iota \),
- \(\text{Hess}^M_H \): the Hessian of \(H \) w.r.t. the Levi-Civita connection \(\nabla^M \) of \(g^M \).

We consider \(\Xi \) to be a complex 4-linear function on the complexification of the tangent space of \(M \) at each point.

Proposition (Bryant)

*If \(\iota \) is Willmore, then a complex quartic differential
\[\tilde{Q} := \Xi \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w'}, \frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) dw \otimes dw \otimes dw \otimes dw \]

is holomorphic.*
Theorem (A) M: a Riemann surface,
$\iota: M \rightarrow S^3$: a conformal and Willmore immersion.
Then the holomorphic quartic differential Q for a conformal immersion $F := \gamma|_{\text{Reg}(\iota)}$ coincides with \tilde{Q} on $\text{Reg}(\iota)$ up to a nonzero constant.

Remark We can have analogous discussions for $\iota: M \rightarrow H^3 = \{x \in E^5_1 \mid \langle x, x \rangle_{4,1} = 0, \ x^1 = 1, \ x^5 > 0\}$ or $E^3 = \{x \in E^5_1 \mid \langle x, x \rangle_{4,1} = 0, \ x^5 = x^1 + 1\}$.
\[\iota : M \longrightarrow S^3_1 = \{ x \in E^5_2 \mid \langle x, x \rangle_{3,2} = 0, \ x^5 = 1 \} : \]
a space-like and conformal immersion,

\[e_3 : \] a normal vector field of \(\iota \) in \(S^3_1 \) s.t. \(\langle e_3, e_3 \rangle_{3,2} = -1 \),

\(H \): the mean curvature of \(\iota \) w.r.t. \(e_3 \).

\[\Rightarrow \ \bullet \ \gamma_\iota := -e_3 + H \iota \] is a map from \(M \) into the anti-de Sitter 4-space \(H^4_1 = \{ x \in E^5_2 \mid \langle x, x \rangle_{3,2} = -1 \} \),

\[\bullet \ |_{\text{Reg} (\iota)} \gamma_\iota \] is a space-like immersion s.t. \(g = \varepsilon^2 g^M \)

\[\left(\varepsilon := \sqrt{H^2 + K^M - \delta} \right). \]

We call \(\gamma_\iota : M \longrightarrow H^4_1 \) the conformal Gauss map of \(\iota \).

We can show that an immersion \(\iota \) is Willmore if and only if the mean curvature vector of \(\gamma_\iota |_{\text{Reg} (\iota)} \) vanishes.
$$\Xi := 2\sigma^M \otimes \text{Hess}^M_H - (H^2 - \delta)\sigma^M \otimes \sigma^M - 2dH \otimes \nabla^M \sigma^M.$$

Proposition (A) If ι is Willmore, then \tilde{Q} is holomorphic.

Theorem (A) M: a Riemann surface,
$\iota: M \rightarrow S^3_1$: a conformal and Willmore immersion.
Then the holomorphic quartic differential Q for a conformal immersion $F := \gamma|_{\text{Reg}(\iota)}$ coincides with \tilde{Q} on $\text{Reg}(\iota)$ up to a nonzero constant.

Remark We can have analogous discussions for $\iota: M \rightarrow H^3_1 = \{x \in E^5_2 \mid \langle x, x \rangle_{3,2} = 0, \ x^1 = 1\}$
or $E^3_1 = \{x \in E^5_2 \mid \langle x, x \rangle_{3,2} = 0, \ x^5 = x^1 + 1\}$.
\[\iota : M \rightarrow L^+ := \{ x \in E^4_1 \mid \langle x, x \rangle_{3,1} = 0, \ x^4 > 0 \} : \]
a space-like and conformal immersion,
\[\xi : \text{a light-like normal vector field of } \iota \text{ in } E^4_1 \text{ s.t. } \langle \xi, \iota \rangle_{3,1} = -1, \]
\[H : \text{the mean curvature of } \iota \text{ w.r.t. a normal vector field } \iota. \]
\[\implies \quad \gamma_\iota := -\xi + H \iota \text{ is a map from } M \text{ into } E^4_1, \]
\[\gamma_\iota|_{\text{Reg}(\iota)} \text{ is a space-like immersion s.t. } g = \varepsilon^2 g^M \quad (\varepsilon := \sqrt{H^2 - K}). \]

We call \(\gamma_\iota : M \rightarrow E^4_1 \) the conformal Gauss map of \(\iota \).

Remark We see that \(H \) is determined by the induced metric \(g^M \).
Theorem (A) An immersion \(\iota \) satisfies \(\Delta^M H - 2\varepsilon^2 = 0 \) if and only if the mean curvature vector of \(\gamma_\iota|_{\text{Reg}(\iota)} \) vanishes.

Remark The Euler-Lagrange equation for Willmore surfaces in \(L^+ \) is given by \(\Delta^M H + 2H^2 = 0 \).

\[
\Xi := \sigma^M \otimes \text{Hess}_H^M - H\sigma^M \otimes \sigma^M - dH \otimes \nabla^M \sigma^M,
\]
where \(\sigma^M \) is the 2nd fundamental form of \(\iota \) w.r.t. a normal vector field \(\iota \).

Proposition (A) If \(\iota \) satisfies \(\Delta^M H - 2\varepsilon^2 = 0 \), then \(\tilde{Q} \) is holomorphic.

Theorem (A) \(M \): a Riemann surface,
\(\iota : M \longrightarrow L^+ \subset E^4_1 \): a conformal immersion s.t. \(\Delta^M H - 2\varepsilon^2 = 0 \).

Then the holomorphic quartic differential \(Q \) for a conformal immersion \(F := \gamma_\iota|_{\text{Reg}(\iota)} \) coincides with \(\tilde{Q} \) on \(\text{Reg}(\iota) \) up to a nonzero constant.
3. Space-like surfaces with zero mean curvature vector in neutral 4-manifolds

\((N, h)\): an oriented neutral 4-dimensional manifold.

\[\Rightarrow\] The metric \(h\) induces an indefinite metric \(\hat{h}\) of \(\bigwedge^2 TN\) defined by

\[
\hat{h}(x_i \wedge x_j, x_k \wedge x_l) = h(x_i, x_k)h(x_j, x_l) - h(x_i, x_l)h(x_j, x_k).
\]

\((e_1, e_2, e_3, e_4)\): a local ordered pseudo-orthonormal frame field of \(TN\) giving the orientation of \(N\).

\[
\Theta_{\pm,1} := \frac{1}{\sqrt{2}}(\theta_{12} \pm \theta_{34}), \quad \Theta_{\pm,2} := \frac{1}{\sqrt{2}}(\theta_{13} \pm \theta_{42}), \quad \Theta_{\pm,3} := \frac{1}{\sqrt{2}}(\theta_{14} \pm \theta_{23}).
\]

\[\Rightarrow\] \(\Theta_{\pm,1}, \Theta_{\pm,2}, \Theta_{\pm,3}\) are mutually orthogonal and satisfy

\[
\hat{h}(\Theta_{\pm,1}, \Theta_{\pm,1}) = 1, \quad \hat{h}(\Theta_{\pm,2}, \Theta_{\pm,2}) = \hat{h}(\Theta_{\pm,3}, \Theta_{\pm,3}) = -1.
\]

Therefore \(\hat{h}\) has signature \((2, 4)\).
$\Lambda^2_+ TN, \Lambda^2_- TN$: $SO(2, 2)$-invariant subbundles of $\Lambda^2 TN$ with rank 3 s.t. all the elements of $\Lambda^2_+ TN$ are $SU(1, 1)$-invariant (notice the double covering $SO_0(2, 2) \longrightarrow SO_0(1, 2) \times SO_0(1, 2)$).

\implies Each fiber of $\Lambda^2_+ TN$ (resp. $\Lambda^2_- TN$) is spanned by $\Theta_{-,1}, \Theta_{+,2}, \Theta_{+,3}$ (resp. $\Theta_{+,1}, \Theta_{-,2}, \Theta_{-,3}$).

In particular, we see

- $\Lambda^2 TN = \Lambda^2_+ TN \oplus \Lambda^2_- TN$,
- $\Lambda^2_+ TN \perp \Lambda^2_- TN$ w.r.t. \hat{h},
- The restriction of \hat{h} on each of $\Lambda^2_+ TN, \Lambda^2_- TN$ has signature $(1, 2)$.
• If N is neutral hyperKähler, then one of $\wedge^2_{\pm}TN$ is a product bundle.

• If $N = E_2^4$, then both of $\wedge^2_{\pm}TN$ are product bundles.

The space-like twistor spaces associated with N are fiber bundles in $\wedge^2_{\pm}TN$ given by

\[U_+\left(\wedge^2_{\pm}TN\right) := \left\{ \Theta \in \wedge^2_{\pm}TN \mid \hat{h}(\Theta, \Theta) = 1 \right\}, \]
\[U_+\left(\wedge^2_{-}TN\right) := \left\{ \Theta \in \wedge^2_{-}TN \mid \hat{h}(\Theta, \Theta) = 1 \right\}. \]
M: a Riemann surface,

$F : M \longrightarrow N$: a space-like and conformal immersion of M into N.

$\Theta_{F, \pm}$: sections of $U_+ \left(\bigwedge^{2 \pm} F^*TN \right)$ defined by $\Theta_{F, \pm} := \frac{1}{\sqrt{2}}(\xi_1 \wedge \xi_2 \mp \xi_3 \wedge \xi_4)$,

where $\xi_1, \xi_2, \xi_3, \xi_4$ form a local pseudo-orthonormal frame field of F^*TN s.t.

- $(\xi_1, \xi_2, \xi_3, \xi_4)$ gives the orientation of N,
- $\xi_1, \xi_2 \in dF(TM)$ so that (ξ_1, ξ_2) gives the orientation of M.

$I_{F, \pm}$: the complex structures of F^*TN corresponding to $\Theta_{F, \pm}$.

Then $\Theta_{F, \pm} = \frac{1}{\sqrt{2}}(e \wedge I_{F, \pm}(e) - e^\perp \wedge I_{F, \pm}(e^\perp))$,

where

- e is a unit tangent vector of F,
- e^\perp is a normal vector of F with $h(e^\perp, e^\perp) = -1$.
If N is neutral hyperKähler so that $\bigwedge^2_T N$ (respectively, \bigwedge^2_-TN) is a product bundle, then we can consider $\Theta_{F,+}$ (respectively, $\Theta_{F,-}$) to be a map from M into $\mathbb{C}H^1$.

Theorem (A, 2020) Suppose

- N is neutral hyperKähler,
- $F : M \rightarrow N$ has zero mean curvature vector.

Then one of $\Theta_{F,+}, \Theta_{F,-}$ is a holomorphic map from M into $\mathbb{C}H^1$.

Corollary (A, 2020)

$F : M \rightarrow E^4_2$: a space-like and conformal immersion with zero mean curvature vector.

Then the Gauss map $G_F : M \rightarrow \mathbb{C}H^1 \times \mathbb{C}H^1$ of F is holomorphic.
M: a Riemann surface,

$F : M \rightarrow N$: a space-like and conformal immersion of M into N
with zero mean curvature vector.

\[\nabla_{\partial/\partial w}(\Psi dw) = \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) dw \quad \left(\Psi = dF \left(\frac{\partial}{\partial w} \right) \right). \]

We can define a complex quartic differential Q on M by

\[Q := h \left(\sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right), \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) \right) dw \otimes dw \otimes dw \otimes dw. \]

If N is a 4-dimensional neutral space form,
then we see by the equations of Codazzi that Q is holomorphic.
Theorem The following are mutually equivalent:

(a) at each point of M, principal curvatures do not depend on the choice of a normal vector e^\perp of F with $h(e^\perp, e^\perp) = -1$;

(b) $h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = h(\sigma(T_1, T_2), \sigma(T_1, T_2))$, $h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0$ for $T_1 := dF(\partial/\partial u)$, $T_2 := dF(\partial/\partial v)$;

(c) $Q \equiv 0$;

(d) one of $\Theta_F, +$, $\Theta_F, -$ is horizontal w.r.t. $\hat{\nabla}$;

(e) one of I_F, \pm is parallel w.r.t. ∇;

(f) we have one of $I_F, \pm \sigma(T_1, T_1) = \sigma(T_1, T_2)$.

We say that F is isotropic if one of (a) \sim (f) in the above theorem holds.
Theorem (A, 2020)

\[F : M \rightarrow N: \text{a space-like and conformal immersion} \]

with zero mean curvature vector and \(\hat{R}(e_1, e_2)\Theta_{F,\pm} = 0 \).

Then \(Q \) is holomorphic.

In addition, if \(\hat{\nabla}\Theta_{F,\pm} \neq 0 \), then we can choose \((e_1, e_2, e_3, e_4)\) satisfying

(a) the connection forms \(\omega, \omega^\perp \) given by \(\omega := h(\nabla e_1, e_2), \omega^\perp := h(\nabla e_3, e_4) \) satisfy \(d*\omega = 0 \) and \(d*\omega^\perp = 0 \);

(b) the 2nd fundamental form of \(F \) is constructed by a solution of an over-determine system s.t. the compatibility condition is given by \(d*\omega = 0 \) and \(d*\omega^\perp = 0 \).

Remark If \(N \) is a 4-dimensional neutral space form, then \(\hat{R}(e_1, e_2)\Theta_{F,\pm} = 0 \).
4. Time-like surfaces with zero mean curvature vector in neutral 4-manifolds

The time-like twistor spaces associated with N are fiber bundles in $\bigwedge_{\pm}^2 TN$ given by

$$U_-(\bigwedge_{\varepsilon}^2 TN) := \left\{ \Theta \in \bigwedge_{\varepsilon}^2 TN \mid \hat{h}(\Theta, \Theta) = -1 \right\} \quad (\varepsilon = +, -).$$

M: a Lorentz surface (two-dimensional manifold with a holomorphic system of paracomplex coordinate neighborhoods),

$F: M \rightarrow N$: a time-like and conformal immersion of M into N.

$\Theta_{F, \pm}$: sections of $U_-(\bigwedge_{\pm}^2 F^*TN)$ defined by $\Theta_{F, \pm} := \frac{1}{\sqrt{2}}(\xi_1 \wedge \xi_3 \pm \xi_4 \wedge \xi_2)$,

where $\xi_1, \xi_2, \xi_3, \xi_4$ form a local pseudo-orthonormal frame field of F^*TN (we suppose that ξ_1, ξ_2 are space-like) s.t.

- $(\xi_1, \xi_2, \xi_3, \xi_4)$ gives the orientation of N,
- $\xi_1, \xi_3 \in dF(TM)$ so that (ξ_1, ξ_3) gives the orientation of M.
$J_{F,\pm}$: the paracomplex structures of F^*TN corresponding to $\Theta_{F,\pm}$.

Then $\Theta_{F,\pm} = \frac{1}{\sqrt{2}}(e \wedge J_{F,\pm}(e) - e^\perp \wedge J_{F,\pm}(e^\perp)),$

where

- e is a unit tangent vector of F,
- e^\perp is a normal vector of F with $h(e^\perp, e^\perp) = -1$.

If N is neutral hyperKähler so that $\wedge^2_+ TN$ (respectively, $\wedge^2_- TN$) is a product bundle, then we can consider $\Theta_{F,+}$ (respectively, $\Theta_{F,-}$) to be a map from M into $\tilde{\mathcal{C}H}^1$ (a hyperboloid of one sheet as a Lorentz surface).
A hyperboloid of one-sheet is given by $H^2_1 = \{ x \in E^3_2 \mid \langle x, x \rangle_{1,2} = -1 \}$.

Let R_+, R_- be open subsets of H^2_1 defined by

$R_+ := \{ x = (x^1, x^2, x^3) \in H^2_1 \mid x^3 \neq 1 \}$,

$R_- := \{ x = (x^1, x^2, x^3) \in H^2_1 \mid x^3 \neq -1 \}$.

$\tilde{\mathbb{C}}$: the paracomplex plane $= \{ \tilde{w} = u + jv \mid u, v \in \mathbb{R} \}$

$(j$: the paraimaginary unit),

$|\tilde{w}|^2 := \overline{\tilde{w}}\tilde{w} = u^2 - v^2$,

$C_\delta := \{ \tilde{w} \in \tilde{\mathbb{C}} \mid |\tilde{w}|^2 = \delta \}$ ($\delta = 0, 1$).

The stereographic projections pr_{\pm} are bijective maps from R_\pm onto $\tilde{\mathbb{C}} \setminus C_1$ defined by

$$\text{pr}_\pm^{-1}(\tilde{w}) = \left(\frac{\text{Re} \, \tilde{w}}{1 - |\tilde{w}|^2}, \mp \frac{\text{Im} \, \tilde{w}}{1 - |\tilde{w}|^2}, \mp \frac{1 + |\tilde{w}|^2}{1 - |\tilde{w}|^2} \right) \quad (\tilde{w} \in \tilde{\mathbb{C}} \setminus C_1).$$
The geometric definition of pr_+
Since $\text{pr}_\pm(R_+ \cap R_-) = \tilde{C} \setminus (C_1 \cup C_0)$, we see that the composition
$$\text{pr}_- \circ \text{pr}_+^{-1} : \text{pr}_+(R_+ \cap R_-) \longrightarrow \text{pr}_-(R_+ \cap R_-)$$
is holomorphic.
Therefore, noticing $R_+ \cup R_- = H^2_1$, we can consider H^2_1 to be a Lorentz surface, which is denoted by $\tilde{\mathcal{C}}H^1$.

Theorem (A, 2020) Suppose

- N is neutral hyperKähler,
- $F : M \longrightarrow N$ has zero mean curvature vector.

Then one of $\Theta_{F,+}, \Theta_{F,-}$ is a holomorphic map from M into $\tilde{\mathcal{C}}H^1$.

Corollary (A, 2020)

$F : M \longrightarrow E^4_2$: a time-like and conformal immersion with zero mean curvature vector,

Then the Gauss map $\mathcal{G}_F : M \longrightarrow \tilde{\mathcal{C}}H^1 \times \tilde{\mathcal{C}}H^1$ of F is holomorphic.
M: a Lorentz surface,
$F : M \rightarrow N$: a time-like and conformal immersion of M into N with zero mean curvature vector,

$w = u + jv$: a local paracomplex coordinate of M,

$\Psi := dF \left(\frac{\partial}{\partial w} \right) \left(\frac{\partial}{\partial w} = \frac{1}{2} \left(\frac{\partial}{\partial u} + j \frac{\partial}{\partial v} \right) \right)$.

$\nabla_{\partial/\partial w}(\Psi dw) = \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) dw$.

We can define a paracomplex quartic differential Q on M by

$Q := h \left(\sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right), \sigma \left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w} \right) \right) dw \otimes dw \otimes dw \otimes dw$.

If N is a 4-dimensional neutral space form, then we see by the equations of Codazzi that Q is holomorphic.
Theorem \textbf{The following are equivalent:}\n(a) $h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = -h(\sigma(T_1, T_2), \sigma(T_1, T_2)),$
\hspace{1cm}$h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0$ for $T_1 := dF(\partial/\partial u), T_2 := dF(\partial/\partial v);$\n(b) $Q \equiv 0.$

We say that F is isotropic if one of (a), (b) in the above theorem holds.

\textbf{Theorem (A, 2020) The following are mutually equivalent:}\n(a) one of $\Theta_F,+, \Theta_F, -$ is horizontal \ w.r.t. $\hat{\nabla};$\n(b) one of J_F,\pm is parallel \ w.r.t. $\nabla;$\n(c) we have one of $J_F,\pm \sigma(T_1, T_1) = \sigma(T_1, T_2).$
\textbf{In addition, if F satisfies one of (a), (b), (c), then F is isotropic.}\n
We say that F is strictly isotropic if one of (a), (b), (c) in the above theorem holds for the orientation of $N.$
It is possible that although F is isotropic, none of the covariant derivatives of $\Theta_{F,+}, \Theta_{F,-}$ w.r.t. $\hat{\nabla}$ become zero.

Proposition (A, 2020)

If both $\hat{\nabla}\Theta_{F,+}$ and $\hat{\nabla}\Theta_{F,-}$ are light-like, then one of the following holds:

(a) the shape operator of a light-like normal vector field vanishes and then Q vanishes;

(b) the shape operator of any normal vector field is zero or light-like, and then Q is zero or null.
Remark
Suppose that N is a 4-dimensional neutral space form.

- Condition (a) implies that a light-like normal vector field of the surface is contained in a constant direction.

 The conformal Gauss map of a time-like surface in a 3-dimensional Lorentzian space form of Willmore type with $Q \equiv 0$ has this property.

- We can characterize surfaces with condition (b), based on the Gauss-Codazzi-Ricci equations.
M: an oriented two-dimensional manifold,

$\iota : M \longrightarrow N_1^3 = S_1^3$, E_1^3 or H_1^3: a time-like immersion

(we consider S_1^3, E_1^3, H_1^3 to be subsets of E_2^5),

e_3: a unit normal vector field of ι in N_1^3,

H: the mean curvature of ι w.r.t. e_3,

$\gamma_\iota := e_3 + H\iota$,

$\Lambda := H^2 - K^M + \delta$

($\delta = 1, 0$ or -1, K^M: the curvature of the induced metric g^M by ι),

Reg (ι): the set of nonzero points of Λ.

$\implies \gamma_\iota|_{\text{Reg}(\iota)}$ is a time-like immersion of Reg (ι) into S_2^4 s.t.

the induced metric g by $\gamma_\iota|_{\text{Reg}(\iota)}$ is given by $g = \Lambda g^M$.

We call $\gamma_\iota : M \longrightarrow S_2^4$ the conformal Gauss map of $\iota : M \longrightarrow N_1^3$.
• ι is a light-like normal vector field of a time-like immersion $\gamma|_{\text{Reg}(\iota)}$,
• the trace of the shape operator of $\gamma|_{\text{Reg}(\iota)}$ w.r.t. ι is zero,
• if we denote by ν a light-like normal vector field of $\gamma|_{\text{Reg}(\iota)}$ satisfying $\langle \iota, \nu \rangle_{3,2} = -1$, then the trace of the shape operator of $\gamma|_{\text{Reg}(\iota)}$ w.r.t. ν is given by $-\frac{1}{\Lambda}(\Delta^M H + 2\Lambda H)$.

Since $\Lambda \equiv 0$ means that $\Delta^M H = 0$, we obtain

Theorem (A) An immersion $\iota : M \longrightarrow N_1^3$ satisfies $\Delta^M H + 2\Lambda H = 0$ if and only if the mean curvature vector of $\gamma|_{\text{Reg}(\iota)} : \text{Reg}(\iota) \longrightarrow S^4_2$ vanishes.

We say that ι is of Willmore type $\iff \Delta^M H + 2\Lambda H = 0$.
M: a Lorentz surface,
$\iota: M \rightarrow N_1^3$: a time-like and conformal immersion,
$\Xi := 2\sigma^M \otimes \text{Hess}^M_H + (H^2 + \delta)\sigma^M \otimes \sigma^M - 2dH \otimes \nabla^M \sigma^M$
(σ^M: the 2nd fundamental form of ι).

Proposition (A) If $\iota: M \rightarrow N_1^3$ is of Willmore type, then a paracomplex quartic differential

$$\tilde{Q} := \Xi\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}, \frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right) dw \otimes dw \otimes dw \otimes dw$$

is holomorphic ($w = u + jv$: a local paracomplex coordinate of M).
Theorem (A)

\[\iota : M \rightarrow N^3_1 : \text{a time-like and conformal immersion of Willmore type.} \]

On \(\text{Reg(}\iota) \), the following hold:

(a) the null points of the differential \(Q \) for \(F := \gamma_{\iota}|_{\text{Reg(}\iota)} \) coincide with the null points of \(\tilde{Q} \), and a null point of \(Q \) is just given by a condition that the shape operator of \(F \) w.r.t. \(\nu \) is light-like;

(b) except the null points, \(Q \) coincides with \(\tilde{Q} \) up to a nonzero constant;

(c) \(Q \equiv 0 \) if and only if a light-like normal vector field \(\nu \) of \(F \) is contained in a constant direction.

Remark

Suppose

- \(\iota \) as in the above theorem satisfies \(\tilde{Q} \equiv 0 \);
- \((\nabla_{T_1} T_1)^\perp \neq \pm (\nabla_{T_1} T_2)^\perp \) \((T_1 = dF(\partial/\partial u), T_2 = dF(\partial/\partial v)) \).

\[\implies \text{For } \Theta_{F,\pm} \text{ with } F = \gamma_{\iota}|_{\text{Reg(}\iota)}, \hat{\nabla}\Theta_{F,\pm} \text{ are light-like.} \]
(\(e_1, e_3\)): a local ordered pseudo-orthonormal frame field of \(TM\) giving the orientation of \(M\).

Theorem (A, 2020)

\[F : M \rightarrow N : \text{a time-like and conformal immersion} \]

with zero mean curvature vector and \(\hat{R}(e_1, e_3)\Theta_{F, \pm} = 0\).

Then \(Q\) is holomorphic and

the 2nd fundamental form of \(F\) is constructed by solutions of four families of ordinary differential equations defined along integral curves of light-like vector fields \(e_1 \pm e_3\) and given by the connection forms \(\omega := -h(\nabla e_1, e_3)\), \(\omega^\perp := -h(\nabla e_2, e_4)\).
If $\hat{\nabla} \Theta_{F, \pm}$ are zero or light-like, then $\hat{R}(e_1, e_3) \Theta_{F, \pm}$ are zero or light-like.

Theorem (A, 2020)

$F : M \longrightarrow N$: a time-like and conformal immersion with zero mean curvature vector s.t. $\hat{R}(e_1, e_3) \Theta_{F, \pm}$ are zero or light-like.

Then the 2nd fundamental form of F is constructed by solutions of suitable two families of ordinary differential equations of the four families in the previous theorem.
THE FIRST TALK HAS ENDED.