Problems

Codimension one Ricci soliton subgroups of solvable Iwasawa groups

Hiroshi Tamaru (田丸 博士) Osaka City University / OCAMI

The 6th China-Japan Geometry Conference 2021/Dec/28

Motivation 3

Result

Abstract (1/2)

Theme

- An interaction between
 - homogeneous Ricci solitons,
 - submanifolds in symmetric spaces.

Joint work with

- Miguel Dominguez-Vazquez (Universidade de Santiago de Compostela)
- Victor Sanmartin-Lopez (Universidad Politecnica de Madrid)

Setting

- M = G/K : irreducible symmetric space of noncpt type,
- G = KAN : Iwasawa decomposition,
- AN : the solvable lwasawa group.

Note

•
$$M \cong AN;$$

- $AN \supset S$: codim 1 subgroup
 - $\Rightarrow S ~(\cong S.o)$ is a homog. hypersurface.

Main Result

- We classify codim 1 Ricci soliton subgr. in AN.
- In other words, we classify particular Ricci soliton hypersurfaces in *M*.

Motivation 1 - (1/2)

Basic Question

 Which homogeneous spaces G/K admit G-invariant Einstein or Ricci soliton metrics?

Def.

• Riem. mfd (M, g) is **Ricci soliton** if $\exists c \in \mathbb{R}, \exists X \in \mathfrak{X}(M) : \operatorname{Ric}_g = cg + \mathfrak{L}_X g$.

Note

• A situation of homogeneous Einstein/Ricci solitons depends on the signature of *c*.

Fact (Naber, Petersen-Wylie)

• (M,g): homogeneous Ricci soliton (c > 0) $\Rightarrow M \cong$ [homog. Einstein with sc > 0] × [flat].

Fact (Alekseevskii-Kimel'fel'd)

• (M,g): homogeneous Ricci soliton (c = 0) \Rightarrow flat.

Motivation 1 - (2/2)

(Generalized) Alekseevskii Conjecture

 (M,g) : homog. Einstein (Ricci soliton), c < 0 ⇒ M is a solvmanifold? (solvable Lie group with left-invariant metric?)

Fact (Jablonski)

• AC and GAC are equivalent.

Fact (Böhm-Lafuente, arXiv:2107)

• AC is true.

Motivating Question

• Which solvable Lie groups admit left-invariant Einstein or Ricci soliton metrics?

- Classification is known only for dim \leq 6 (Will).
- Typical examples are (irr.) symmetric spaces of noncpt type $M = G/K \cong AN$.

Motivation 2 - (1/4)

Basic Question

• Find/classify submanifolds with some nice property in symmetric spaces.

Our Question

- Study/classify homogeneous hypersurfaces in symmetric spaces of noncompact type.
- Equivalently, cohomogeneity one action := isometric action with regular orbit of codim 1.

Fact (Berndt-T.)

- *M* : irr. symmetric space of noncpt type,
- *H* → *M* : cohom. one (*H* connected) satisfies
 (*K*) ∃1 singular orbit;
 - (A) $\not\exists$ singular orbit, $\exists 1$ minimal orbit;
 - (N) $\not\exists$ singular orbit, all orbits are congruent.

Ex. (E. Cartan)

Homogeneous hypersurfaces in $\mathbb{R}H^n$ are

- (K) a tube around totally geodesic $\mathbb{R}H^k$ with $k \in \{0, \ldots, n-2\};$
- (A) a totally geodesic $\mathbb{R}H^{n-1}$ and its equidistant hypersurfaces;
- (*N*) horospheres.

Motivation 2 - (3/4)

Note (classification of (A), Berndt-T.)

- Actions of (A) are given by some codim 1 subgroups in AN;
- there are almost rk(M) such actions.

Note (classification of (N), Berndt-T.)

- Actions of (N) are given by some codim 1 subgroups in AN;
- \exists continuously many such actions if rk > 1.

Note (classification of (K))

- rk = 1: completely classified:
 - $\mathbb{R}H^n$ by Cartan;
 - $\mathbb{C}H^n$, $\mathbb{O}H^2$ by Berndt-T. (2007);
 - $\mathbb{H}\mathbb{H}^n$ by DiazRamos et al. (2021);
- rk = 2: classified for many cases:
 - Berndt-T. (2012);
 - Berndt-DominguezVazquez (2015);
 - Solonenko (arXiv);
- $rk \ge 3$: widely open.

Motivation 2 - (4/4)

• We are interested in Ricci soliton hypersurfaces.

Ex. (for $\mathbb{R}H^n$)

(A) a totally geodesic ℝHⁿ⁻¹ and its equidistant hypersurfaces have const sectional curvatures;
 (N) horospheres are flat.

Ex. (for $\mathbb{C}H^n$)

- $\mathbb{C}H^n$ admits no Einstein hypersurfaces;
- The horosphere is Ricci soliton (isometric to the Heisenberg group with left-inv. metric);

Motivation 3 - (1/1)

• We study Ricci soliton subgroups in the solvable Iwasawa groups *AN*.

Fact (T.)

∃ interesting examples (codim > 1):
 For every parabolic subgroup Q_Φ ⊂ G, the solvable part A_ΦN_Φ of the Langlands decomposition Q_Φ = M_ΦA_ΦN_Φ is Einstein.

Fact (Jablonski)

Every Ricci soliton solvmfd (S, g) can be isometrically embedded into some AN. (In general, codim is very high.)

Setting

- M = G/K : irr. symmetric sp. of noncpt type;
- G = KAN : Iwasawa decomposition;
- *AN* : the solvable lwasawa group.

Note

- $M \cong (AN, \exists \langle, \rangle)$: isometric;
- For $S \subset AN$ we equip the induced metric.

Main Thm.

codim 1 subgroup S ($\subset AN$) is Ricci soliton iff

- *M* is any, and *S* contains *N* (i.e., type (*N*));
- $M = \mathbb{C}H^2$, and S is "ruled minimal";
- $M = \mathbb{R}H^n$, and S is any.

Note

• Case for $\mathbb{R}H^n$ is well-known (as before).

Note

- Case for type (N) is known:
- Recall that all orbits are congruent;
- All orbits are Ricci soliton (cf. Cho-Hashinaga-Kubo-Taketomi-T.);
- If rk > 1, then \exists Einstein ones.

- Case for $\mathbb{C}H^n$:
- type (N) = horosphere, which is Ricci soliton;
- type (A) = homogeneous ruled minimal hypersurface W^{2n-1} , and its equidistant ones;
- W²ⁿ⁻¹ is Ricci soliton iff n = 2.
 (cf. Kubo-Hashinaga-T.)

Idea of Proof

- $S (\subset AN)$ is completely solvable;
- completely solvable solvmfd is Ricci soliton iff algebraic Ricci soliton, i.e.,

 $\operatorname{Ric} = c \cdot \operatorname{id} + D \quad (c \in \mathbb{R}, D \in \operatorname{Der}(\mathfrak{s}))$

so we have only to check this condition...

Note

• By a similar method, we also classify codim. 1 Ricci soliton subgroups of *H*-type groups and Damek-Ricci spaces, which contain some new examples.

Problems - (1/3)

Problem 1

- Classify Ricci soliton subgroups in AN with ...
 e.g., low codimension;
 - e.g., inducing (hyper)polar foliations.

- For S_Φ = A_ΦN_Φ in parabolic subgroups,
 some of them are of codim 2;
 - the action of S_{Φ} is polar (inducing a foliation);
 - all S_{Φ} -orbits are congruent (like (N)-type);
 - all orbit are minimal.

Problems - (2/3)

Problem 2

• Classify Ricci soliton homogeneous hypersurfaces in *M* (irr. symmetric space of noncpt type).

- Cases (A) and (N) are solved by our work;
- It remains (*K*) only;
- By (the proof of) Alekseevskii conjecture, seems *A* Ricci soliton with *c* < 0;
- Do not forget geodesic spheres in RHⁿ, which is Einstein (standard sphere)...

Problem 3

• Classify Ricci soliton subgroups in N with codim 1.

- For $S_{\Phi} = A_{\Phi}N_{\Phi}$ in parabolic subgroups, - N_{Φ} is Ricci soliton in N;
 - some N_{Φ} is of codim 1;
 - so more examples can be expected.

- J. Berndt, J.C. Diaz-Ramos, H. Tamaru; Hyperpolar homogeneous foliations on symmetric spaces of noncompact type, J. Differential Geom. (2010)
- J. Berndt, H. Tamaru; Homogeneous codimension one foliations on noncompact symmetric spaces, J. Differential Geom. (2003)
- J. Berndt, H. Tamaru; Cohomogeneity one actions on symmetric spaces of noncompact type, J. Reine Angew. Math. (2013)
- J.T. Cho, T. Hashinaga, A. Kubo, Y. Taketomi, H. Tamaru; Realizations of some contact metric manifolds as Ricci soliton real hypersurfaces, J. Geom. Phys. (2018)
- M. Dominguez-Vazquez, V. Sanmartin-Lopez, H. Tamaru, Codimension one Ricci soliton subgroups of solvable Iwasawa groups, J. Math. Pures Appl. 152 (2021)
- T. Hashinaga, A. Kubo, H. Tamaru; Some topics of homogeneous submanifolds in complex hyperbolic spaces, Differential Geometry of Submanifolds and its Related Topics (2013)
- T. Hashinaga, A. Kubo, H. Tamaru; Homogeneous Ricci soliton hypersurfaces in the complex hyperbolic spaces, Tohoku Math. J. (2016)
- H. Tamaru; Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds, Math. Ann. (2011)

Thank you!