市大数学教室

大阪市立大学数学研究所
(Osaka City University Advanced Mathematical Institute)
+ トップページに戻る




  複素解析セミナー(2014)
 2013年度 2015年度


大阪市立大学数学研究所(OCAMI) での事業の一環として、複素函数論に関連したセミナーをしています。
講演者を募っております。

連絡先: 佐官 謙一,  田中 清喜,  西尾 昌治
〒558-8585
大阪府大阪市住吉区杉本3丁目3番138号

大阪市立大学 大学院理学研究科 数物系専攻
大阪市立大学数学研究所





 新学舎建設のため数学教室は共通研究棟に移転しました.
キャンパスマップ
共通研究棟「29」の建物です.(理学部は「12」) 
矢印から出入り出来ます.


講 演 者 :高橋 太 (大阪市大・理)
タ イ ト ル :A simple proof of Hardy's inequality in a limiting case
   (アブストラクト)
日 時 10月30日(木) 13:30 ~
場 所 :大阪市立大学(共通研究棟301(講究室))
Toptop
講 演 者 :橋詰 雅斗 (大阪市大・理)
タ イ ト ル :A minimization problem with a sign changing condition
   (アブストラクト)
日 時 6月26日(木) 13:30 ~
場 所 :大阪市立大学(共通研究棟301(講究室))
Toptop
講 演 者 :志賀 啓成 (東工大・理)
タ イ ト ル :Harnack distanceについて
   (アブストラクト)
日 時 4月11日(金) 13:30 ~
場 所 :大阪市立大学、共通研究棟4階419(第1セミナー室)
Toptop

アブストラクト集



講 演 者: 高橋 太 (大阪市大・理)
タ イ ト ル: A simple proof of Hardy's inequality in a limiting case

$\Omega$ を原点を含む $N$ 次元有界領域とする。 ソボレフ空間 $W^{1,p}_0(\Omega)$, $(1 < p < N)$ の関数に対して成り立つ Hardy の不等式は 偏微分方程式論の様々な分野で現れる基本的関数不等式の一つであり、これについては既に多くの研究がある。 $p = N$ のときは対数型の補正項を含んだ不等式が成立し、臨界型 Hardy 不等式と呼ばれる。 この講演ではシャープバージョンと呼ばれる臨界型 Hardy 不等式の、部分積分(だけ)を基礎にした簡明な証明法を紹介する。

Toptop



講 演 者: 橋詰 雅斗 (大阪市大・理)
タ イ ト ル: A minimization problem with a sign changing condition

Sobolev 不等式の最良定数の達成可能性など、今日まで Sobolev 商に対する最小化問題は多く研究されてきた。 Gir\~ao-Weth は、H^1 空間において、積分平均が0になるという制約条件の下 でSobolev 商の最小化元の存在を示した。 本講演では、彼らとは別の符号変化制約条件を考察し、Sobolev 商の最小化問題 の達成可能性について得られた結果を述べる。

Toptop



講 演 者: 志賀 啓成 (東工大・理)
タ イ ト ル: Harnack distanceについて

Harnack distanceは正値調和関数に関するHarnackの原理から定まるものである.この距離に関する研究はあまり多いとは言えないが,本講演ではこの距離に関する(主としてリーマン面における)先行結果のいくつかをreproveする.さらにリーマン面の分類理論を考慮しつつ,新たに得られた結果&得られつつある結果を述べる.

Toptop




最終更新日: 2014年3月9日
(C)大阪市大数学教室